矩形巷道围岩变形破坏机理及在王村矿的应用研究.pdf
Study on the Deation Mechanism of the Surrounding Rock in Rectangular Laneway and It ts Application in Wangcun Coal Mine Dissertation ted to Xi’an University of Science and Technology In partial fulfillment of the requirement For the degree of Doctor of Engineering ByYU Yuanxiang College of Architecture and Civil Engineering Dissertation Directed by GU Shuancheng June, 2013 西安科技大学博士学位论文 矩形巷道围岩变形破坏机理矩形巷道围岩变形破坏机理 及在王村矿的应用研究及在王村矿的应用研究 专专 业业岩土工程 博博 士士 生生于远祥 指导教师指导教师谷拴成 教授 日日 期期2013 年 06 月 论文题目矩形巷道围岩变形破坏机理及在王村矿的应用研究 专 业 岩土工程 博 士 生 于远祥 (签名) 指导教师 谷拴成 (签名) 摘 要 复杂条件下矩形巷道围岩破坏规律及其支护技术研究是煤矿建设和生产中的重要 课题之一。开展矩形巷道围岩变形机理研究具有重要的理论意义和工程实用价值。本文 以王村煤矿为工程背景,采用理论分析、数值模拟及现场试验相结合的方法开展研究工 作研究等多种方法,对矩形巷道围岩的变形破坏机理进行深入研究,所得成果在 13503 工作面运输顺槽的支护试验中得到了成功应用。主要结论有 ⑴研究了矩形巷道围岩变形破坏的基本规律。结果表明,当高跨比一定时,随两帮 侧压力的增大,矩形巷道角部应力持续增加。当角部岩体所受压应力超过其极限强度后 产生压剪破坏而形成塑性区,在顶底板和两帮的中间部位首先发生拉裂破坏,表现为顶 底板及两帮的位移量均逐渐增大;当侧压力一定时,随高跨比的增加,矩形巷道围岩应 力最大值仍出现在顶底板与两帮的角部区域内,角部应力先增加后降低,并在高跨比为 1 时达到最小值。两帮稳定性随巷道高跨比的增加逐渐降低,而顶底板稳定性则随其高 跨比的增加而迅速增加,表现为两帮位移量随巷道高跨比的增加而增加,而顶底板位移 量却随巷道高跨比的增加而减小。 ⑵分析了矩形巷道围岩变形破坏的力学机理。结果表明,单一岩层顶板的稳定性取 决于弹性模量、泊松比及其厚跨比,而复合层状顶板的稳定性则与其综合弹性模量及泊 松比密切相关,其变形破坏过程包括承载调整→刚度弱化→应力调整→顶板稳定或失稳 四个阶段;将矩形巷道帮部的变形区域划分为破碎区、塑性区及弹性区,给出了巷帮极 限平衡区内岩体荷载的分布规律,建立了巷帮塑性区宽度及其水平位移公式,推导了两 帮挤压流动下巷道底板的最大破坏深度。 ⑶研究了矩形巷道不同顶板的破坏范围及其形态。针对普氏平衡拱理论在工程实际 运用中的不足,讨论了底板稳定和两帮楔形破坏时不同侧压力下单一岩层顶板及复合层 状顶板的平衡拱形态及矢高。针对矩形巷道围岩破坏后围岩应力状态按椭圆巷道分布这 一特点,以椭圆巷道的最大内接矩形巷道为条件,分析得到椭圆巷道与其最大内接矩形 巷道具有相同的高跨比。基于椭圆巷道围岩应力与轴比的关系,建立了矩形巷道最佳高 跨比与其侧压力系数的关系公式,为矩形巷道断面的合理设计提供了依据。 ⑷开展了矩形巷道围岩变形破坏的现场实测研究。针对现有围岩松动圈理论在研究 矩形巷道围岩变形破坏时的不足,运用深基点多点位移计和钻孔窥视相结合的方法,对 王村煤矿主要矩形回采巷道围岩的变形破坏范围进行了现场监测。结果表明,当断面面 积一定时,巷道顶板松动范围随高跨比的增加而减小,两帮松动范围则随高跨比的增加 而增加。通过对大量实测数据的整理与分析,建立了考虑巷道埋深、岩性及跨度的围岩 松动范围预测公式。 ⑸以王村矿 13503 工作面运输顺槽为试验巷道,运用研究成果对巷道断面尺寸和原 有支护方案及参数进行了优化。结果表明,基于矩形巷道围岩变形破坏机理来确定其围 岩断面大小和支护参数是合理可行的。 关 键 词矩形巷道;变形机理;普氏理论;有限元;现场实测;支护设计 研究类型应用基础研究 Subject Study on the Deation Mechanism of the Surrounding Rock in Rectangular Laneway and Its Application in Wangcun Coal Mine Specialty Geotechnical Engineering Name YU Yuanxiang ((Signature)) Instructor GU Shuancheng ((Signature)) ABSTRACT The failure law and support technology research of rectangular roadway under complex conditions is an important issue of coal mine construction and production. To carry out a rectangle surrounding rock deation mechanism study has important theoretical significance and practical engineering value In this paper,studys on the surrounding rock deation mechanism and control technology of the laneway on the background of Wang Cun coal mine by theoretical analysis, numerical simulation, site monitoring as well as laboratory.The main conclusions are as follows ⑴The basic law of the rectangle surrounding rock deation and failure were studied. The results showed that when the span-height ratio is constant,with the lateral pressure increasing,the stress continues to increase in rectangular laneways corner, corner rock causes shear failure, the crack or shear failure is occurred in the roof , composite-layered roof and both sides and its displacement gradually increas. When the lateral pressure coefficient is constant, with the span-heigh ratio increasing, the corner stress increases firstly and then decreases.The displacement of both sides increases, while the displacement of the roof with composite-layered roof decreases. ⑵Analyzed the mechanical mechanism of the deation and failure about the surrounding rock in rectangular laneway was studied systematically. The results show that the stability of a single layer roof depends on elastic modulus, Poissons ratio and thickness-span ratio, while the stability of the composite layer roof related with its consolidated elastic modulus and Poissons closely whose deation and failure include four phases which is the adjustment of structural carrying capacity , the weakness of structural overall stiffness,the stress adjustment and the structural instability.The displacement of coal sides in rectangular laneways inculdes the crush zone , plastic zone and the elastic zone.It provided the distribution of load in coal sides limit equilibrium region, was established about the coal plastic zone ula of the width and horizontal displacement and was derived about the maximum failure depth of the backplane when both sides is squeezed. 3Studied the extent of failure and the of failure in different sides pressure.As the platts balance arch theory is inadequate in the practical engineering application,this paper studys on the stablity of the backplane and the balance arch shape of the single layered roof and composite layered roof in different sides pressure.According to the features of rock stress state by ellipse laneways distributing after rectangular laneways rock failure,it was derived on maximal span-height ratio of elliptical maximum inscribed rectangle laneways.Based on the relationship of elliptic surrounding rock stress with the axial ratio ,the paper establish the optimal span-height ratio ula of rectangular laneways by elliptical maximum inscribed rectangle laneways which provides a basis for rectangular laneways design. 4The field test study on deation and failure of surrounding rock of rectangular tunnels was launched. Aiming at the destruction of the deation and failure of surrounding rock circle theory in the study of the existing rectangular roadway surrounding rock of deep point, the of multi-point displacement meter and sight combination is used, the main rectangular roadway surrounding rock deation and failure scope of Wangcun mine field monitoring. Through the collation and analysis of many data, established the buried depth, roof lithology and span and two for damage range of single and multiple factors predicting ula considers rectangular tunnel. 5The transport of Wangcun mine 13503 working face crossheading roadway as test, using the above research results to the field of surrounding rock of the original support scheme and parameters were optimized. The results show that, the mechanism of deation and failure of surrounding rock of roadway surrounding rock based on rectangle to determine section size and support parameters are reasonable and feasible. Key words Rectangular Laneway;Deation Law;Protodyakonovs Theory;the Finite Element;Field Measurement;Support Design Thesis Application Fundamental Research 目 录 I 目 录 1 绪论 ...................................................................................................................................... 1 1.1 课题研究背景及意义 ..................................................................................................... 1 1.1.1 课题研究背景 ................................................................................................................................ 1 1.1.2 课题研究意义 ................................................................................................................................ 2 1.2 国内外研究现状及存在问题 ......................................................................................... 2 1.2.1 巷道围岩变形破坏机理研究现状 .......................................................................................... 2 1.2.2 巷道围岩支护技术研究现状 ................................................................................................... 5 1.2.3 存在的问题 ................................................................................................................................... 10 1.3 论文研究内容及方法 .................................................................................................. 11 2 矩形巷道围岩变形破坏基本规律 .................................................................................... 13 2.1 矩形巷道周边围岩应力的弹性解 .............................................................................. 13 2.1.1 求解硐室周边应力的复变理论公式 ................................................................................... 13 2.1.2 矩形硐室周边围岩应力的弹性解 ........................................................................................ 14 2.2 矩形巷道围岩变形基本规律 ...................................................................................... 17 2.2.1 计算模型及其参数的确定 ...................................................................................................... 17 2.2.2 高跨比对矩形巷道围岩变形的影响分析 .......................................................................... 18 2.2.3 侧压力对矩形巷道围岩变形的影响分析 .......................................................................... 22 2.3 矩形巷道围岩破坏基本规律 ...................................................................................... 27 2.3.1 拉裂破坏 ........................................................................................................................................ 27 2.3.2 剪切破坏 ........................................................................................................................................ 28 2.3.3 复合破坏 ........................................................................................................................................ 29 2.4 王村矿矩形巷道围岩变形破坏规律 .......................................................................... 30 2.4.1 王村矿矩形巷道围岩变形规律 ............................................................................................. 30 2.4.2 王村矿矩形巷道围岩破坏规律 ............................................................................................. 34 2.5 本章小结 ...................................................................................................................... 37 3 矩形巷道围岩变形破坏机理研究 .................................................................................... 38 3.1 矩形巷道顶板变形破坏机理 ...................................................................................... 38 3.1.1 单一岩层顶板的变形破坏机理 ............................................................................................. 38 3.1.2 复合层状顶板的变形破坏机理 ............................................................................................. 40 目 录 II 3.2 矩形巷道两帮变形破坏机理 ...................................................................................... 43 3.2.1 煤帮力学模型的建立 ............................................................................................. 44 3.2.2 煤帮应力及位移分析 ............................................................................................. 45 3.2.3 煤帮极限平衡区影响因素分析 ............................................................................. 51 3.3 矩形巷道底板变形破坏机理 ...................................................................................... 55 3.3.1 底板岩体变形破坏基本过程 ................................................................................. 55 3.3.2 底板岩体最大破坏深度 ......................................................................................... 56 3.4 工程实例验证 .............................................................................................................. 58 3.4.1 矩形巷道顶板稳定性分析 ..................................................................................... 58 3.4.2 煤帮及底板变形破坏分析 ..................................................................................... 59 3.5 本章小结 ...................................................................................................................... 61 4 矩形巷道围岩破坏范围与形态研究 ................................................................................ 63 4.1 普氏平衡拱理论存在的问题与改进 .......................................................................... 63 4.1.1 普氏平衡拱理论存在的问题 ................................................................................. 63 4.1.2 对普氏平衡拱理论的改进 ..................................................................................... 64 4.2 单一岩层顶板的平衡拱形态及矢高 .......................................................................... 65 4.2.1 巷道帮部△ ABC 岩体稳定性分析 ........................................................................ 65 4.2.2 △ABC 岩体失稳时的平衡拱形态及矢高 ............................................................. 68 4.2.3 △ABC 岩体稳定时的平衡拱形态及矢高 ............................................................. 74 4.3 复合层状顶板的平衡拱形态及矢高 .......................................................................... 74 4.3.1 忽略水平地应力时的平衡拱形态及矢高 ............................................................. 74 4.3.2 考虑水平地应力时的平衡拱形态及矢高 ............................................................. 75 4.4 矩形巷道最佳高跨比理论分析 .................................................................................. 76 4.4.1 椭圆形巷道围岩应力与轴比的关系 ..................................................................... 76 4.4.2 矩形巷道最佳高跨比的确定 ................................................................................. 77 4.5 本章小结 ...................................................................................................................... 79 5 矩形巷道围岩变形破坏现场监测及分析 ........................................................................ 80 5.1 工程概况 ...................................................................................................................... 80 5.1.1 地理位置 ................................................................................................................. 80 5.1.2 工程地质与水文地质条件 ..................................................................................... 80 5.1.3 巷道围岩物理力学性质 ......................................................................................... 81 5.2 王村矿围岩变形破坏现场监测 .................................................................................. 83 目 录 III 5.2.1 监测原则及方法 ..................................................................................................... 83 5.2.2 矩形巷道围岩破坏范围现场监测 ......................................................................... 84 5.3 矩形巷道围岩破坏范围基本规律 .............................................................................. 85 5.3.1 顶板破坏范围与埋深的关系 ................................................................................. 86 5.3.2 顶板破坏范围与 c P 0 的关系 .............................................................................. 88 5.3.3 两帮破坏范围与埋深及跨度的关系 ..................................................................... 90 5.4 本章小结 ...................................................................................................................... 92 6 工程应用 ............................................................................................................................ 93 6.1 试验巷道围岩条件与支护设计 .................................................................................. 93 6.1.1 试验巷道围岩条件 ................................................................................................. 93 6.1.2 现有支护设计参数及存在的问题 ......................................................................... 93 6.2 现场拉拔试验 .............................................................................................................. 94 6.2.1 锚杆拉拔试验 .................................