成庄煤矿4322工作面运输平巷支护技术研究.pdf
工程硕士专业学位论文 成庄煤矿 4322 工作面运输平巷 支护技术研究 Study on Support Technology of Transportation Roadway in 4322 Working Face of Chengzhuang Coal Mine 作者牛新新 导师郑西贵教授 中国矿业大学 二〇一九年五月 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书)。 作者签名导师签名 年月日年月日 中图分类号TD353学校代码10290 UDC622密级公开 中国矿业大学 工程硕士专业学位论文 成庄煤矿 4322 工作面运输平巷 支护技术研究 Study on Support Technology of Transportation Roadway in 4322 Working Face of Chengzhuang Coal Mine 作者牛新新导师郑西贵教授 申请学位 工程硕士专业学位培养单位矿业工程学院 学科专业矿业工程研究方向 岩体力学与岩层控制 答辩委员会主席姚强岭评 阅 人盲审 二〇一九年五月 致谢致谢 几经修改完善,论文终于完稿。回顾在中国矿业大学从本科到硕士的点点滴 滴,久久不能平静,在这里对所有帮助支持我的老师、同学以及亲友们表示我深 深的和谢意和祝福,祝愿母校中国矿业大学能够再创佳绩,再创辉煌。 本论文从选题到完稿,我的导师郑西贵教授给予了无微不至的关怀,倾注了 大量精力和心血。在论文写作过程中,每当我有疑惑之时,郑老师总会在繁忙的 工作和生活中,耐心指点我攻克每一个关键点,给予了我建设性的意见。郑老师 的专业知识、修养品德、思想观念、治学态度,都在潜移默化中启迪着我,让我 受益匪浅。再次由衷的感谢郑老师,希望在未来的工作生活中,能够不断的鼓励 我、支持我,让我能够走得更远、行的更稳。 还要感谢同门的师兄师弟们,是你们给我以许多鼓励和帮助。不论是帮我同 学院沟通,递送资料,还是在论文写作中帮助查阅期刊、提供素材,让我能够安 心完成论文。没有你们的包容和支持,我的论文不会进展的如此顺利。回想整个 写作过程,虽有艰辛,心底却是满满的幸福。 感谢论文完成过程中,妻子能够独立照顾老人和孩子,撑起家庭一片天,让 我能够安心完成学业。同时要对我的母亲致以诚挚的谢意。父亲早逝,求学生涯 中, 正是因为有母亲的坚强支持, 才得以完成学业, 在此祝愿我的母亲身体健康、 心情舒畅 最后十分感谢在繁忙工作之中评阅以及参加答辩的各位专家、教授,谢谢您 提的宝贵意见。 I 摘摘要要 本文针对成庄煤矿采煤工作面运输平巷支护问题,选择 4322 工作面为实验 对象,根据现场测试、理论分析和数值模拟,对巷帮顶煤岩体强度和结构进行了 测试;根据实测的结果进行模数值拟研究,对锚杆支护及巷道围岩在不同应力、 岩性环境下的破碎机理进行分析,借鉴相似工程经验,最终提出 4322 工作面运 输平巷低密度高强稳定型锚杆支护方案,在降低锚杆的支护密度的同时,提高巷 道锚杆的支护强度,有效控制巷道服务期间的变形的前提下,使支护成本大大降 低,提高掘进效率,取得了良好的应用效果。研究取得主要结论如下 (1)4322 工作面运输平巷顶板以上 10m 范围内以砂岩为主,平均强度为 52.75MPa,3煤体强度平均值为 14.5MPa,浅部煤体较松散,完整性差;深部煤 体较完整,有利于发挥锚杆的主动支护作用。4322 工作面运输平巷属于中等应 力场,顶板为砂岩,巷道破坏范围和变形程度较小,两帮和底板破坏范围相对大 于顶板,掘进时需加强巷道帮部和顶板支护,可适当降低支护密度。但间排距不 能过大。对 4322 工作面运输平巷支护密度模拟表明,采用锚杆排距 1100mm 支 护时, 其顶板和两帮应力分布及最大位移量、 塑性区分布与排距 1000mm 结果基 本相同,可一定程度降低密度,提高掘进速度。 (2)4322 工作面运输平巷锚杆支护初始设计,采用树脂加长锚固、高预紧 力、高强度锚杆支护系统,并进行锚索补强,高强高预应力锚杆支护可以克服普 通高强锚杆适用中存在的主要缺陷,及时施加高预拉力,有效的阻止围岩非连续 变形,使锚固区载荷趋于均匀并实现连续传递。锚杆预紧扭矩不小于 400Nm, 顶板锚杆排距 1100mm,每排 5 根锚杆,间距 1150mm。帮部锚杆排距 1100mm, 每排 3 根锚杆,间距 1200mm。顶板锚索呈 2-0-2 布置,排距为 2200mm,间距 2000mm,锚索预紧力 250kN。采用高强度的可调心拱形托板及配套锁具,锚索 托板承载能力不低于 500kN。 (3)对 4322 工作面运输平巷支护设计矿压监测表明掘进期间表面位移变 化较小,顶板稳定得到了有效控制,离层现象基本没有发生;回采期间在强力锚 杆支护下,巷道整体变形较小,顶底板移近量较大主要是巷道底鼓;锚杆、锚索 受力比较均匀,没有太大幅度的变化,且锚杆、锚索工作阻力分别在其破断载荷 的 40~50,支护强度安全可靠。 (4)成庄矿采煤工作面运输平巷采用原支护方案施工巷道掘进进尺约为 300 米/月,采用低密度支护后达到 335 米/月,巷道掘进进尺提高 11.6。而且能 有效节约巷道支护材料用量,可减小生产支护材料期间产生废弃物对环境的污 染。在保证巷道支护强度的基础上,尽量降低锚杆的支护密度,工人的劳动强度 大降低,巷道的掘进效率相应得到了提高,对工作面的生产快速衔接大有裨益。 II 可为成庄矿乃至矿区其它矿井类似条件巷道支护提供经验数据。不仅具有实用 性,而且技术性、理论性强,应用前景明确,具有较好的推广应用价值。 本论文有图 85 幅,表 8 个,参考文献 97 篇。 关键词关键词锚杆支护;FLAC3D模拟;掘进速度;支护强度;预紧力 III Abstract In this paper, aiming at the support problem of transportation roadway in Chengzhuang Coal Mine, 4322 working face is selected as the experimental object, and the strength and structure of roof rock mass of roadway are tested according to field test, theoretical analysis and numerical simulation. Based on the measured results, simulation research is carried out to analyze the breaking mechanism of bolt supportandroadwaysurroundingrockunderdifferentstressandlithology environments. Similar to engineering experience, a low-density, high-strength and stable bolt support scheme for transport roadway in 4322 working face is finally put forward. While reducing the support density of bolt, the support strength of bolt in roadway is improved, and the deation during roadway service is effectively controlled. Under the premise, the support cost is greatly reduced, the excavation efficiency is improved, and good application results are achieved. The main conclusions are as follows 1 Sandstone is predominant in the area of 10 m above the roof of transport roadway in 4322 working face, with an average strength of 52.75 MPa and an average strength of 14.5 MPa for 3 coal body. The shallow coal body is relatively loose and its integrity is poor; the deep coal body is relatively complete, which is conducive to the active support of bolts. The transport roadway of 4322 working face belongs to medium stress field. The roof is sandstone. The damage scope and deation degree of roadway are small. The damage scope of both sides and floor is larger than that of roof. It is necessary to strengthen the support of roadway side and roof when driving, so that the support density can be reduced appropriately. But the distance between rows should not be too large. The simulation of support density of transport roadway in 4322 working face shows that when bolt row spacing is 1100 mm, the distribution of stress, maximum displacement and plastic zone of roof and two sides are basically the same as that of row spacing of 1000 mm, which can reduce the density to a certain extent and improve the driving speed. 2 The initial design of bolt support in transport roadway of 4322 working face adopts resin lengthening anchorage, high pre-tightening force and high strength bolt support system, and reinforces the anchor cables. High strength and high pre-stress bolt support can overcome the main shortcomings existing in the application of ordinary high strength bolt, apply high pre-tension in time, effectively prevent discontinuous deation of surrounding rock, and make the load of anchorage area IV uni and uni. Realize continuous transmission. The pre-tightening torque of bolt is not less than 400 Nm, the row spacing of roof bolt is 1100 mm, and there are 5 bolts in each row, the spacing is 1150 mm. The row spacing of the upper bolts is 1100 mm, with 3 bolts in each row, and the spacing is 1200 mm. The roof anchor cables are arranged in 2-0-2 with a row spacing of 2200 mm, a spacing of 2000 mm and a pre-tightening force of 250 kN. With high strength adjustable center arch bracket and matching lock, the bearing capacity of bracket is not less than 500 kN. 3 Ground pressure monitoring of transport roadway support design in 4322 working face shows that during excavation, surface displacement changes are small, bolt support effectively controls the stability of roof, and basically no separation occurs; during mining, under strong bolt support, the overall deation of roadway is small, and the main reason for roof and floor closeness is roadway floor heave; the stress of bolt and bolt rope is relatively uni, not too large. The working resistance of bolts and cables is 40-50 of their breaking load, respectively. The supporting strength is safe and reliable. 4 In Chengzhuang Coal Mine, the driving footage of roadway is about 300 meters/month when the original supporting scheme is used in one-time roadway construction. After adopting low-density support, the driving footage of roadway reaches 335 meters/month, and the driving footage of roadway is increased by 11.6. Moreover, the research of this project can effectively save the amount of roadway supporting materials and reduce the environmental pollution caused by waste during the production of supporting materials. On the basis of guaranteeing the support strength of roadway, the support density of bolt is lowered as far as possible, the labor intensity of workers is reduced, the excavation efficiency of roadway is improved correspondingly, which is conducive to the quick connection of production of mine working face. It can provide experience data for roadway support under similar conditions in Chengzhuang Mine and other mines. It is not only practical, but also technically and theoretically strong, and has a clear application prospect. It has a good application value. This paper has 85 pieces, 8 tables and 97 references. Key words Bolt support; FLAC3D simulation; Driving speed; Support strength; Preload V 目目录录 摘要摘要ⅠⅠ 目录目录V 图清单图清单ⅨⅨ 表清单表清单XIV 变量注释表变量注释表XV 1 绪论绪论1 1.1 选题背景及意义1 1.2 国内外研究现状2 1.3 本文研究内容8 1.4 本文研究目标9 1.5 技术路线图9 2 巷道围岩稳定性影响巷道围岩稳定性影响因素与因素与机理机理10 2.1 巷道围岩稳定性机理10 2.2 围岩结构窥视及强度测试11 2.3 巷道围岩变形及破坏机理数值模拟分析21 2.4 本章小结35 3 巷道支护巷道支护方案与参数设计方案与参数设计36 3.1 巷道锚杆支护作用机理分析36 3.2 锚杆支护设计方法与支护原则39 3.3 实验巷道地质力学评估40 3.4 锚杆支护数值模拟43 3.5 锚杆支护初始设计54 3.6 本章小结55 4 工业型试验及工业型试验及矿压监测矿压监测56 4.1 锚杆支护矿压监测方法56 4.2 矿压监测数据分析58 4.3 本章小结66 5 主要主要结论结论67 参考文献参考文献69 作者简历作者简历74 VI 论文原创性声明论文原创性声明75 学位论文数据集学位论文数据集76 VII Contents AbstractⅠⅠ ContentsV List of FiguresⅨⅨ List of TablesXIV List of VariablesXV 1.Introduction1 1.1 Background and significance of topic selection2 1.2 Research Actuality 2 1.3 Research contents9 1.4 Research objective of this paper9 1.5 Technology Roadmap9 2 Influencing factors and mechanism of roadway surrounding rock stability10 2.1 Stability mechanism of surrounding rock of roadway10 2.2 Wall rock structure peep and wall rock strength test11 2.3 Numerical simulation and analysis of deation and failure mechanism of roadway surrounding rock21 2.4 Conclusion of This Chapter35 3 Roadway support scheme and parameter design36 3.1 Mechanism analysis of roadway bolt support 36 3.2 Design and principle of bolt support 39 3.3 Experimental roadway geomechanical uation40 3.4 Design and principle of bolt support 43 3.5 Initial design of bolt support 54 3.6 Conclusion of This Chapter55 4 Industrial test and mine pressure monitoring 56 4.1 Monitoring of mine pressure with bolt support 56 4.2 Analysis of mine pressure monitoring data58 4.3 Conclusion of This Chapter 66 5 Main conclusions67 VIII acknowledgement69 Author’s Resume74 Declaration of Thesis/Dissertation Originality75 Thesis/Dissertation Data Collection76 IX 图清单图清单 图序号图名称页码 图 1-1 锚杆支护的悬吊作用2 Figure 1-1 suspension effect of bolt support2 图 1-2锚杆支护的组合梁作用3 Figure 1-2combined beam action of bolt support3 图 1-3锚杆支护的加固拱作用3 Figure 1-3Reinforcing Arch Function of Bolt Support3 图 1-4水平应力方向对巷道变形与破坏的影响4 Figure 1-4influence of horizontal stress direction on roadway deation and failure4 图 1-5技术路线图9 Figure 1-5Technology Roadmap9 图 2-1围岩强度测定原理示意图13 Figure 2-1schematic diagram of determination principle of surrounding rock strength13 图 2-2WQCZ-56型围岩强度测定装置13 Figure 2-2wqcz-56 type surrounding rock strength measuring device13 图 2-3电子钻孔窥视仪原理图15 Figure 2-3schematic diagram of electronic borehole peep mete15 图 2-4电子钻孔观测系统15 Figure 2-4Electronic borehole observation system15 图 2-5距巷口435m处顶、帮围岩结构观察结果16 Figure. 2-5 Observation results of roof surrounding rock structure at a distance of 435m from the roadway 16 图 2-6距巷口 448m 处顶、帮围岩结构观察结果17 Figure 2-6 observation results of roof surrounding rock structure at a distance of 448m from the roadway entrance 17 图 2-7距巷口468m处顶、帮围岩结构观察结果18 Figure 2-7 observation results of roof surrounding rock structure from 468m away from the roadway entrance 18 图 2-8图2-8 巷道围岩10m范围内强度原位测试20 Figure 2-8in-situ test of strength within 10m of surrounding rock of roadway20 图 2-9数值模型整体效果图22 Figure. 2-9overall effect of the numerical model22 图 2-10巷道顶底板岩层分布及锚杆锚索布置图23 Figure 2-10 roadway roof and floor rock strata distribution and anchor bolt and cable layout 23 图 2-11低地应力条件下掘进期间巷道应力分布图24 Figure. 2-11 roadway stress distribution during excavation under low in-situ stress conditions 24 图 2-12低地应力条件下掘进期间巷道位移分布图24 Figure 2-12 roadway displacement distribution during tunneling under low in-situ stress 24 X 图 2-13图 2-13 低地应力条件下掘进期间巷道围岩塑性区24 Figure 2-13 plastic zone of roadway surrounding rock during tunneling under low in-situ stres 24 图 2-14低地应力条件下掘进期间巷道变形曲线25 Figure2-14roadway deation curve during excavation under low in-situ stress25 图 2-15中等地应力条件下巷道掘进期间应力分布图26 Figure 2-15 stress distribution during roadway excavation under moderate in-situ stress conditions 26 图 2-16中等地应力条件下巷道掘进期间位移分布图26 Figure. 2-16 displacement distribution during roadway excavation under moderate in-situ stress 26 图 2-17中等地应力条件下掘进期间巷道围岩塑性区图26 Figure 2-17 plastic zone of roadway surrounding rock during tunneling under moderate in-situ stress 26 图 2-18掘进期间巷道围岩变形曲线图27 Figure 2-18deation curve of roadway surrounding rock during excavation27 图 2-19高地应力条件下掘进期间巷道应力分布图28 Figure. 2-19 roadway stress distribution during excavation under high in-situ stress conditions 28 图 2-20高地应力条件下掘进期间巷道位移分布图28 Figure. 2-20 roadway displacement distribution during excavation under high in-situ stress 28 图 2-21高地应力条件下掘进期间巷道围岩塑性区28 Figure 2-21 plastic zone of roadway surrounding rock during excavation under high in-situ stress 28 图 2-22高地应力条件下掘进期间巷道变形曲线29 Figure 2-22roadway deation curve during excavation under high in-situ stress29 图 2-23顶板为泥岩条件下掘进期间巷道应力分布图30 Figure 2-23 roof is the stress distribution diagram of roadway during tunneling under the condition of mudstone 30 图 2-24顶板为泥岩条件下掘进期间巷道表面位移分布图30 Figure 2-24 hows the surface displacement distribution of roadway during excavation under the condition of mudstone 30 图 2-25巷道为泥岩条件下掘进期间巷道围岩塑性区31 Figure 2-25 shows the plastic zone of roadway surrounding rock during tunneling under the condition of mudstone 31 图 2-26顶板为泥岩条件下掘进期间巷道变形曲线31 Figure 2-26 oof is the roadway deation curve during excavation under the condition of mudstone 31 图 2-27顶板为粉砂岩条件下掘进期间巷道应力分布图32 Figure 2-27 shows the stress distribution of roadway during excavation under siltstone condition 32 图 2-28顶板为粉砂岩条件下掘进期间巷道位移分布图32 Figure 2-28 shows the displacement distribution of roadway during excavation under siltstone condition 32 图 2-29顶板为粉砂岩条件下掘进期间巷道变形曲线33 Figure 2-29roof is the roadway deation curve during excavation under siltstone33 XI condition 图 2-30顶板为粉砂岩条件下掘进期间巷道围岩塑性区32 Figure 2-30 roof is the plastic zone of roadway surrounding rock during excavation under siltstone condition 32 图 2-31顶板为石灰岩条件下掘进期间巷道应力分布图34 Figure 2-31 shows the stress distribution of roadway during excavation under limestone condition 34 图 2-32顶板