非承压含水层底部单孔疏放水渗流特征_李洋.pdf
第 47 卷 第 3 期 煤田地质与勘探 Vol. 47 No.3 2019 年 6 月 COAL GEOLOGY 2. Henan Province Key Laboratory of Rock and Soil Mechanics and Structural Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China; 3. Henan Province Geology and Mining Construction Engineering LTD, Zhengzhou 450007, China Abstract Dewatering from an aquifer bottom for drain and depressurization is one common to ensure safety mining. This is significantly different from pumping from the ground. In order to study the seepage characteristics of the dewatering holewell, the seepage characteristics of a single well dewatering from an uncon- fined aquifer bottom was taken as an example and studied using numerical simulation . The results show that when lw0.99指数函数关系,A、B 和 C 均为拟合参数。当井长超过临界长度 lc时渗流量达 到最大,且不再随着井长的增加而增加。疏放水井 的临界长度 lc定义为疏放水井在一定直径条件下, 达到最大渗流量时的最小井长。 由图 6 也可以看出, 井的半径越大,渗流井的临界长度 lc越小。不同半 径 Rw条件下,疏放水井的临界长度 lc的大小如表 2 所示。表 2 中 klc/H0,为疏放水井的临界长度与含 水层厚度比值。k 与 Rw的关系如图 7 所示,可以看 出疏放水井的临界长度随井径的增加呈对数函数减 小关系,kM–VlnRwNR20.99,其中 M、V、N 为拟合参数。 图 6 渗流量与井长的关系 Fig.6 Relationship between seepage flow and well length 表 2 不同半径条件下疏放水井的临界长度及其与含水 层厚度比 Table 2 The well critical length and its ratio to aquifer thickness for different dewatering well radii Rw/m lc/m k Rw/m lc/m k 0.1 39.0 0.65 2 29.4 0.49 0.2 37.8 0.63 4 25.2 0.42 0.5 34.8 0.58 6 21.0 0.35 1 33.0 0.55 10 17.4 0.29 图 7 k 与 Rw的关系 Fig.7 Relationship between k and Rw 图 8 渗流量与井径的关系 Fig.8 Relationship between seepage flow and well radius 由图 8 可以看出,不同井长疏放水井的渗流量 随着井径的增加逐渐增加,且满足 QabRw c,a、b 和 c 均为拟合参数,R21 且 b1.0 的函数关系。 由上述分析可知,在井下施工疏放水井时,并 非与地面抽排水孔完全一样,井长越长,渗流量或 抽排水量越大。对于井下疏放水钻孔,当长度过小 时,如小于 lc,不能达到最大疏放水的效果;当长 度过大时,如大于 lc,多余的钻井尺寸没有达到增 加涌水量的目的,浪费施工时间、费用。而不同的 井径所对应的临界长度不同,可以根据拟定钻孔半 径确定最优钻进尺寸,即钻进的极限井长 lc,最优 化钻进方案。临界长度 lc的界定对井下疏放水钻进 方案的确定具有重要指导意义。 3.3 基于修正的 Dupuit 公式计算疏放水非完整 井涌水量 由于当疏放水渗流井井长超过临界长度 lc时, 其渗流量与完整井渗流量一样,为最大渗流量,可 以采用式1进行渗流量计算。当疏放水井井长小于 lc时,其渗流量再采用 Dupuit 潜水完整井渗流公式 计算将产生较大误差。以半径为 1 m 的井下疏放水 渗流井为例,当井长小于 lc时,根据数值模拟结果, 对不同井长条件下渗流井达到稳定渗流时所引起的 水位降深 s 进行统计表 3。根据式1对渗流量 Qs 进行计算,并将其与数值模拟结果 Qn进行对比,发 现误差很大,范围在–16–33.4。将 slw代替水 位降深 s,代入式1对其进行修正,如式2所示, 采用修正后的 Dupuit 公式2对疏放水非完整井渗 流量 Qr进行计算,其结果与数值模拟结果 Qn 十分接近,与数值模拟结果相对误差为–0.1 2.8 表 3,相比以往方法该计算结果更为准确。 ww r w 2s 1.366 lg KHsll Q R R 2 因此,在进行矿井涌水量预测时,应当考虑采动 ChaoXing 第 3 期 李洋等 非承压含水层底部单孔疏放水渗流特征 159 裂隙发育至含水层的高度及含水层的厚度和初始孔隙 水压,不能简单的认为导水裂隙上部含水层的孔隙水 压力降低为 0,采用“大井法”估算矿井涌水量。借助 于修正的 Dupuit 公式计算, 合理的将裂隙概化为等效 孔径疏放水孔,查明裂隙上部孔隙水压力降低值及裂 隙揭露含水层长度,可更准确预测矿井涌水量。 表 3 潜水含水层渗流量计算Rw1.0 m Table 3 Water flux calculations for the unconfined aquifer with Rw1.0 m 渗流量 Q/m3d–1 误差分析/ lw/m s/m slw/m Qn Qr Qs Qr Qs 30 21.70 51.70 714.11 713.37 500.74 –0.1 –29.9 20 16.92 36.92 644.77 655.09 429.36 1.6 –33.4 10 11.16 21.16 483.95 493.29 325.53 1.9 –32.7 6 8.56 14.56 378.71 389.38 270.96 2.8 –28.5 4 6.67 10.67 311.85 315.66 227.53 1.2 –27.0 2 4.80 6.80 229.75 230.64 180.66 0.4 –21.4 1 3.68 4.68 178.92 177.50 150.22 –0.8 –16.0 4 结 论 a. 由含水层底部进行疏放水时,疏放水井上方 会形成孔隙水压力降低区,当疏放水井的井长较小 时,在疏放水井中心上方孔隙水压力大于 0,且由 下而上呈先增加后逐渐减小的规律分布。 b. 当 lwlc时,渗流量与井长呈指数函数关系 增加;当 lw≥lc时,疏放水井渗流量达到最大值, 不再随井长的增加而变化;渗流量随井的半径 Rw 增加呈小于 1 次方函数关系增加,井的半径越大渗 流量越大。 c. 将 slw代替水位降深 s 代入 Dupuit 潜水完整 井计算公式对其修正,当 lwlc时,疏放水非完整井的 渗流量 Qr采用修正的 Dupuit 公式进行计算更精确。 参考文献 [1] Niskovskiy Y,Vasianovich A. Investigation of possibility to ap- ply untraditional and ecologically good s of coal mining under sea bed[C]//The Sixth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers,1996,51–53. [2] SUN Yajun, XU Zhimin, DONG Qinghong, et al. Forecasting water disaster for a coal mine under the Xiaolangdi reservoir[J]. Journal of China University of Mining and Technology, 2008, 184 516–520. [3] ZHANG Jincai,SHEN Baohong. Coal mining under aquifers in ChinaA case study[J]. International Journal of Rock Mechanics and Mining Sciences,2004,414629–639. [4] LI Tie,MEI Tingting,SUN Xuehui,et al. A study on a wa- ter-inrush incident at Laohutai coalmine[J]. International Journal of Rock Mechanics and Mining Sciences,2013,59151–159. [5] 武雄, 于青春, 汪小刚, 等. 地表水体下煤炭资源开采研究[J]. 岩石力学与工程学报,2006,2551029–1036. WU Xiong, YU Qingchun, WANG Xiaogang, et al. Exploitation of coal resources under water body[J]. Chinese Journal of Rock Mechanics and Engineering,2006,2551029–1036. [6] 武强,赵苏启,董书宁,等. 煤矿防治水手册[M]. 北京煤 炭工业出版社,2013. [7] 方俊, 张杰. 定向长钻孔超前疏放顶板水技术在枣泉煤矿的应 用[J]. 煤炭工程,2016,48756–59. FANG Jun, ZHANG Jie. Application of advance roof dewatering with directional long borehole in Zaoquan mine[J]. Coal Engi- neering,2016,48756–59. [8] HANG Yuan,ZHANG Gailing,YANG Guoyong. Numerical simulation of dewatering thick unconsolidated aquifers for safety of underground coal mining[J]. Mining Science and Technol- ogyChina,2009,193312–316. [9] 尹尚先,张祥维,徐慧,等. “大井法” 中渗透系数及含水层 厚度的优化[J]. 煤田地质与勘探,2015,43553–56. YIN Shangxian, ZHAGN Xiangwei, XU Hui, et al. Optimization of permeability coefficient and aquifer thickness in large-well- [J]. Coal Geology Exploration,2015,43553–56. [10] 陈冲, 李文尧, 徐世光. 大井法在煤矿涌水量预测中的应用[J]. 煤炭技术,2017,3611199–201. CHEN Chong,LI Wenrao,XU Shiguang. Application of large diameter in estimation water inflow of coal mine[J]. Coal Technology,2017,3611199–201. [11] 李明山. 伯努利方程与井下探放水钻孔涌水量计算[J]. 矿业 安全与环保,1999,26237–38. LI Mingshan. Bernouli Equation and calculation of water inflow rate from probing and discharging[J]. Mining Safety Environ- mental Protection,1999,26237–38. [12] 陈实,董书宁,李竞生,等. 煤矿工作面顶板倾斜钻孔疏放水 井流计算方法[J]. 煤炭学报,2016,4161517–1523. CHEN Shi,DONG Shuning,LI Jingsheng,et al. Analytical solution for slanted well in the roof of coal mine working face[J]. Journal of China Coal Society,2016,416 1517–1523. 下转第 165 页 ChaoXing 第 3 期 李刚等 团柏煤矿带压开采条件下 11-101 工作面合理长度 165 [9] 韩德品,郭林生,赵利利,等. 瞬变电磁法快速探查煤矿突水 构造关键技术及应用效果[J]. 煤田地质与勘探,2014,426 97–100. HAN Depin,GUO Linsheng,ZHAO Lili,et al. The key technology and application effects of transient electromagnetic for rapid detecting water inrush structure in coal mine[J]. Coal Geology Exploration,2014,42697–100. [10] 于雯琪, 钱家忠, 马雷, 等. 基于 GIS 和 AHP 的谢桥煤矿 13-1 煤顶板突水危险性评价[J]. 煤田地质与勘探,2016,441 69–73. YU Wenqi,QIAN Jiazhong,MA Lei,et al. The water inrush risk assessment of roof of seam 13-1 in Xieqiao mine based on GIS and AHP[J]. Coal Geology Exploration,2016, 44169–73. [11] 张平松, 吴基文, 刘盛东. 煤层采动底板破坏规律动态观测研 究[J]. 岩石力学与工程学报,2005,2513009–3013. ZHANG Pingsong,WU Jiwen,LIU Shengdong. Study on dy- namic observation of coal seam floor’s failure law[J]. Chinese Journal of Rock Mechanics and Engineering,2005,251 3009–3013. [12] 李相臣, 陈德飞, 康毅力, 等. 基于 CT 扫描的煤岩孔裂隙表征[J]. 煤田地质与勘探,2016,44558–62. LI Xiangchen,CHEN Defei,KANG Yili,et al. Characterization of pores and fractures of coal based on X-ray computed tomography[J]. Coal Geology Exploration,2016,44558–62. [13] 许延春,谢小锋,董检平,等. 在相似模拟试验中利用超声 波检测技术探测底板破坏深度[J]. 煤矿开采,2016,211 7–11. XU Yanchun,XIE Xiaofeng,DONG Jianping,et al. Ultrasonic testing of floor breakage depth on similar simulation[J]. Coal Mining Technology,2016,2117–11. [14] 张文彬. 综采放顶煤工作面底板应力及其破坏深度分析[J]. 煤炭科学技术,2010,381217–21. ZHANG Wenbin. Analysis on floor stress and failure depth of fully mechanized top coal caving mining face[J]. Coal Science and Technology,2010,381217–21. [15] 张蕊,姜振泉,岳尊彩,等. 采动条件下厚煤层底板破坏规律 动态监测及数值模拟研究[J]. 采矿与安全工程学报,2012, 295625–630. ZHANG Rui,JIANG Zhenquan,YUE Zuncai,et al. In-situ dynamic observation and numerical analysis of thick coal seam floor’s failure law under the mining[J]. Journal of Mining Safety Engineering,2012,295625–630. [16] 孙娈娈,王中华,孙燕青,等. 煤层底板破坏流固耦合数值模 拟[J]. 煤田地质与勘探,2013,41355–58. SUN Luanluan,WANG Zhonghua,SUN Yanqing,et al. Fluid- solid coupling numerical simulation of coal seam floor failure[J]. Coal Geology Exploration,2013,41355–58. [17] 鲁海峰,姚多喜,胡友彪,等. 水压影响下煤层底板采动破坏 深度弹性力学解[J]. 采矿与安全工程学报,2017,343 452–458. LU Haifeng, YAO Duoxi, HU Youbiao, et al. Elasticity solution for failure depth of mining floor under water pressure[J]. Journal of Mining Safety Engineering,2017,343452–458. [18] 杜伟升, 姜耀东, 高林涛. 带压开采底板破坏因素分析及突水 预测研究[J]. 煤炭科学技术,2017,456112–117. DU Weisheng, JIANG Yaodong, GAO Lintao. Study on water inrush prediction and floor failure factors analysis in pressurized mining coal[J]. Coal Science and Technology,2017,456112–117. [19] 李刚, 王海平, 苏俊辉. 采动影响下的煤层底板岩层破坏特征 以团柏煤矿为例[J]. 煤田地质与勘探,2012,40259–61. LI Gang,WANG Haiping,SU Junhui. Destruction features in floor caused by mining activityWith Tuanbai mine as exam- ple[J]. Coal Geology Exploration,2012,40259–61. [20] 刘伟韬,申建军,贾红果. 深井底板采动应力演化规律与 破坏特征研究[J]. 采矿与安全工程学报,2016,336 1045–1051. LIU Weitao, SHEN Jianjun, JIA Hongguo. Mining-induced stress evolution law and failure characteristics of floor in deep mine[J]. Journal of Mining Safety Engineering,2016,336 1045–1051. 责任编辑 张宏 周建军 上接第 159 页 [13] 赵宝峰. 灰色关联度在井下钻孔疏放水效果分析中的应用[J]. 辽宁工程技术大学学报自然科学版,2013,323289–292. ZHAO Baofeng. Application of gray correlation in the effect analysis of underground drilling water drainage[J]. Journal of Liaoning Technical UniversityNatural Science Edition,2013, 323289–292. [14] 靳月灿,孙亚军,徐智敏,等. 收缩开采期封闭不良钻孔的涌 水量预测研究[J]. 中国煤炭,2012,38699–103. JIN Yuecan,SUN Yajun,XU Zhimin,et al. Research on water inflow prediction from bad sealed boreholes in contraction coal mining[J]. China Coal,2012,38699–103. [15] 王文学,隋旺华. 某矿第四系底部含水层降水井群优化布置[J]. 煤田地质与勘探,2011,39230–33. WANG Wenxue,SUI Wanghua. Optimization for dewatering well design in the Quaternary bottom aquifer[J]. Coal Geology Exploration,2011,39230–33. 责任编辑 周建军 ChaoXing