关于铅锌矿的浮选.doc
关于铅锌矿的浮选1 铅锌是人类从铅锌矿石中提炼出来的较早的金属之一。铅锌广泛用于电气工业、机械工业、军事工业、冶金工业、化学工业、轻工业和医药业等领域。此外,铅金属在核工业、石油工业等部门也有较多的用途。在铅锌矿中铅工业矿物有11种,锌工业矿物有6种,以方铅矿、闪锌矿最为重要。方铅矿的化学式为PbS,晶体结构为等轴晶系,硫离子成立方最紧密堆积,铅离子充填在所有的八面体空隙中。新鲜的方铅矿表面具有疏水性,未氧化的方铅矿很易浮选,表面氧化后可浮性降低。黄药或黑药是方铅矿的典型的捕收剂,黄药在方铅矿表面发生化学吸附,白药和乙硫氮也是常用捕收剂,其中丁铵黑药对方铅矿有选择性捕收作用。重铬酸盐是方铅矿的有效抑制剂,但对被Cu2活化的方铅矿,其抑制效果下降。被重铬酸盐抑制过的方铅矿,很难活化,要用盐酸或在酸性介质中,用氯化钠处理后才能活化。氰化物不能抑制它的浮选,硫化钠对方铅矿的可浮性很敏感,过量硫离子的存在可抑制方铅矿的浮选;二氧化硫、亚硫酸及其盐类、石灰、硫酸锌或与其它药剂配合可以抑制方铅矿的浮选。 闪锌矿的化学式为ZnS,晶体结构为等轴晶系, Zn离子分布于晶胞之角顶及所有面的中心。S位于晶胞所分成的八个小立方体中的四个小立方体的中心。高锰酸钾浓度为4~610-5摩尔/升时对活化的闪锌矿有较强的抑制作用,浓度偏高时却使其良好浮游。其作用机理为高锰酸钾浓度低时与闪锌矿表面活化膜及表面晶格离子反应生成的金属羟基化合物起抑制作用并使黄药脱附,浓度高时则在矿物表面发生氧化还原反应生成大量元素硫。 氰化物可以强烈的抑制闪锌矿,此外硫酸锌、硫代硫酸盐等都可以抑制闪锌矿的浮选。 黄铁矿是地壳中分布最广的硫化物,形成于各种不同的地质条件下,与其他矿物共生。黄铁矿能在多种稳定场中存在是因为Fe2的电子构型,使它进入硫离子组成的八面体场中获得了较大的晶体场稳定能及附加吸附能。因此,黄铁矿可形成并稳定于各种不同的地质条件下。 除了黄铁矿的晶体结构、化学组成、表面构造等因素对其可浮性有影响之外,许多研究也表明,黄铁矿的矿床成矿条件、矿石的形成特点、矿石的结构构造等因素也有影响。石透原对日本十三个不同矿床的黄铁矿的化学分析结果指出,各矿样的S/Fe比值大都在1.93~2.06范围内波动,S/Fe比愈接近理论值2,则黄铁矿可浮性愈好。陈述文等对八种不同产地的黄铁矿的可浮性进行了研究,认为单纯用硫铁比来判断其可浮性有一定的局限性,黄铁矿的可浮性还与其半导体性质及化学组成有关。两者的关系为S/Fe比高的黄铁矿为N型半导体,其温差电动势为负值,可浮性差,易被Na2S、Ca2等离子抑制;S/Fe比接近理论值2者既可能是P型也可能是N型半导体,在酸性介质中可浮性好,在碱性介质中可浮性差;S/Fe比值低的黄铁矿为P型半导体,温差电动势大,在碱性介质中可浮性好,难以被Na2S、Ca2等抑制,但在酸性介质中可浮性差。 短链黄药是黄铁矿的传统捕收剂,其疏水产物为双黄药。在黄药作用下,黄铁矿在pH小于6的酸性介质中易浮,但pH为6~7间有不同研究表明其可浮性变差或更好浮。凌竞宏等研究则表明这一现象和矿样处理方式有关。在碱性条件下,黄铁矿可浮性随着pH值的升高而下降。 黄铁矿的活化剂一般使用硫酸,此外也可用Na2CO3或CO2来活化。作用机理为其一是降低溶液pH值,使黄铁矿表面Ca2、Fe2、Fe3等离子形成络合物或难溶盐从黄铁矿表面脱附而进入溶液,恢复黄铁矿的新鲜表面;其二是由于活化剂的存在使黄铁矿表面难以被氧化,从而被抑制的黄铁矿得以活化而上浮。当黄铁矿表面氧化较深时,可被Cu2活化。其机理为Cu2可取代黄铁矿晶格中的Fe2使表面生成含铜硫化膜从而增强对黄药的吸附作用;但当黄铁矿吸附捕收剂或受到石灰抑制较深时,则需在酸性介质中或经酸清洗后方可被CuSO4活化。 3.2铅锌浮选捕收剂 铅锌矿的常用捕收剂有 1、黄药类这类药剂包括黄药、黄药酯等。 2.硫氮类,如乙硫氮,其捕收能力较黄药强。它对方铅矿、黄铜矿的捕收能力强,对黄铁矿捕收能力校弱,选择性好,浮选速度较快,用途比黄药少。对硫化矿的粗粒这生体有较强的捕收比它用于铜铅硫比矿分选时,能够得到比黄药更好的分选效果。 3.黑药类 黑药是硫化矿的有效捕收剂,其捕收能力较黄药弱,同一金属离子的二烃基二硫代磷酸盐的溶解度积均较相应离子的黄原酸盐大。黑药有起泡性。 工业常用黑药有25号黑药、丁铵黑药、胺黑药、环烷黑药。其中丁铵黑药(二丁基二硫代磷酸铵)为白色粉末,易溶于水,潮解后变黑,有一定起泡性,适用于铜、铅、锌、镍等硫化矿的浮选。弱碱性矿浆中对黄铁矿和磁黄铁矿的捕收能力较弱,对方铅矿的捕收能力较强。 3.3铅锌浮选调整剂 调整剂按其在浮选过程中的作用可分为抑制剂、活化剂、介质pH调节剂、矿泥分散剂、凝结剂和续凝剂。 调控剂包括各种无机化合物如盐、碱和酸、有机化合物。同一种药剂,在不同的浮选条件下,往往起不同的作用。 一、抑制剂 1.石灰石灰CaO有强烈的吸水性,与水作用生成消石灰Ca0H2。它难溶于水,是一种强碱,加入浮选矿浆中的反应如下 CaOH2O=CaOH2 CaOH2CaOHOH- CaOH=Ca20H- 石灰常用于提高矿浆PH值,抑制硫化铁矿物。在硫化铜、铅、锌矿石中,常伴生有硫化铁矿黄铁矿、磁黄铁矿和白铁矿、硫砷铁矿如毒砂,为了更好处浮选铜、铅、锌矿物,常要加石灰抑制硫化铁矿物。 石灰对方铅矿,特别是表面略有氧化的方铅矿,有抑制作用。因此,从多金属硫化矿中浮选方铅矿时,常采用碳酸钠调节矿浆pH。如果由于黄铁矿含量较高,必须用石灰调节矿浆pH时,应注意控制石灰的用量。 石灰对起泡剂的起泡能力有影响,如松醉油类起袍剂的起泡能力,随PH的升高而增大,酚类起泡剂的起泡能力,则随pH的升高而降低。 石灰本身又是一种凝结剂,能使矿桨中微细颗粒凝结。因而,当石灰用最适当时,浮选泡沫可保持一定的粘度;当用量过大时,将促使微细矿粒凝结,而使泡沫粘结膨胀,影响浮选过程的正常进行。 2.氰化物NaCN、KCN氰化物是铅锌分选时的有效抑制剂。氰化物主要是氰化钠和氰化钾,也有用氰化钙的。 氰化物是强碱弱酸生成的盐,它在矿浆个水解,生成HCN和CN- KCN=KCN- CNH2O=HCNOH- 由上述平衡式看出,碱性矿浆中,CN-浓度提高,有利于抑制。如pH降低,形成HCN氢氰酸使抑制作用降低。因此,使用氰化物,必须保持矿浆的碱性。 氰化物是剧毒的药剂,多年来一直在进行无氰或少氰抑制剂的研究。 3.硫酸锌 硫酸锌其纯品为白色晶体,易溶于水,是闪锌矿的抑制剂,通常在碱性矿浆中它才有抑制作用,矿浆pH愈高,其抑制作用愈明显。硫酸锌在水中产生下列反应 ZnSO4=Zn2SO42- Zn22H20ZnOH22H ZnOH2为两性化合物,溶于酸生成盐 ZnOH2H2S04=ZnSO42H2O 在碱性介质中,得到HZnO2-和ZnO22-。它们吸附于矿物增强了矿物表面的亲水性。 ZnOH2NaOH=NaHZnO2H2O ZnOH22NaOH=Na2ZnO22H2O 硫酸锌单独使用时,共抑制效果较差,通常与氰化物、硫化钠、亚硫酸盐或硫代硫酸盐、碳酸钠等配合使用。 硫酸锌和氰化物联合使用,可加强对闪锌矿的抑制作用。一般常用的比例为氰化物硫酸锌=125。此时,CN-和Zn2形成胶体ZnCN2沉淀。 4.亚硫酸、亚硫酸盐、S02气体等 亚硫酸、亚硫酸盐、二氧化硫气体这类药剂包括二氧化硫SO2、亚硫酸H2S03、亚硫酸钠和硫代硫酸钠等。 二氧化硫溶于水生成亚硫酸 S02十H2O=H2S03 二氧化硫在水中的溶解度随温度的升高而降低,18℃时,用水吸收,其中亚硫酸的浓度为1.2;温度升高到30℃时,亚硫酸的浓度为0.6。亚硫酸及其盐具有强还原性,故不稳定。亚硫酸可以和很多金属离子形成酸式盐、亚硫酸氢盐或正盐亚硫酸盐,除碱金属亚硫酸正盐易溶于水外,其他金属的正盐均微溶于水。亚硫酸在水中分二步解离,溶液中H2SO3、HSO3-和SO32-的浓度,取决于溶液的pH值。使用亚硫酸盐浮选时,矿桨PH常控制在57的范围内。此时,起抑制作用的主要是HSO3-。二氧化硫及亚硫酸盐主要用于抑制黄铁矿、闪锌矿。用溶解有二氧化硫的石灰造成的弱酸性矿桨pH57,或者使用二氧化硫与硫酸锌、硫酸亚铁、硫酸铁等联合作抑制剂。此时方铅矿、黄铁矿、闪锌矿受到抑制,被抑制的闪锌矿,用少量硫酸铜即可活化。还可以用硫代硫酸钠、焦亚硫酸钠代替亚硫酸盐,抑制闪锌矿和黄铁矿。 对于被铜离子强烈活化的闪锌矿,只用亚硫酸盐其抑制效果较差。此时,如果同时添加硫酸锌,硫化钠或氰化物,则能够增强抑制效果。亚硫酸盐在矿浆中易于氧化失效,因而,其抑制作用有时间性。为使过程稳定,通常采用分段添加的方法。 5.起泡剂 起泡剂应是异极性的有机物质,极性基亲水,非极性基亲气,使起泡剂分子在空气与水的界面上产生定向排列,大部分起泡剂是表面活性物质,能够强烈地降低水的表面张力。同一系列的有机表面活性剂表顶活性按“三分之一”的规律递增,此即所谓“特芳贝定则”。起泡剂应有适当的溶解度。起泡剂的溶解度,对起泡性能及形成气泡的特性有很大的影响,如溶解度很高,则耗药量大,或迅速发生大量泡沫,但不能耐久,当溶解度过低冰来不及溶解,随泡沫流失,或起泡速度缓慢,延续时间校长,难于控制。 关于铅锌矿的浮选2 一、铜、铅、锌硫化矿的可浮性 1、铜矿物的可浮性 (1)黄铜矿CuFeS2,含Cu 34.57。斑岩铜矿。 捕收剂低级黄药、黑药。 机理化学吸附,与铜离子作用生成黄原酸铜;物理吸附,以双黄药形式吸附与Fe3离子表面。 抑制剂CN-、NaCN、kCN、k4[FeCN6]、k3[FeCN6],均在碱性介质中使用。 H2O2、NaClO通过过氧化作用而降低其可浮性,在酸性介质中使用。 活化剂CuSO4。 (2)辉铜矿和铜兰的可浮性(属于次生铜矿) 辉铜矿Cu2S含Cu 79.83,天然可浮性最好。 铜兰 CuS含Cu 64.4,天然可浮性很好。 捕收剂低级黄药,黑药,PH值113。 机理同上。 抑制剂Na2OS3、Na2S2O3、k4[FeCN6]、k3[FeCN6]、Na2S,均在碱性介质中使用。 氰化物抑制效果较差。 特点这两种矿物均性质较脆,磨矿易泥化,溶解性也相对较大,回收率较低,矿浆中的[Cu2]离子含量高,造成抑制困难,且容易活化其它矿物,致使浮选选择性差。 (3)斑铜矿 Cu5FeS4,Cu含量 63.3,可浮性介于上述(1)、(2)两种矿物之间。 捕收剂同上,PH值510。 抑制剂CN-、石灰在碱性介质中使用。 一般规律1)凡不含铁矿物,可浮性相似,CN-、石灰对它们的抑制弱。 2)凡含铁矿物,CN-、石灰在碱性介质中可以抑制其可浮性。 3)含铜量越高,可浮性越好。 2、铅矿物的可浮性 代表性矿物为方铅矿。PbS含Pb 86.6,立方晶体结晶,天然可浮性较好。 捕收剂 1)PH值10.5后方铅矿受一定的抑制。 捕收机理为化学吸附,产物为黄原酸铅。 抑制剂诺克斯试剂(K2CrO4KCrO2)、Na2S、CaO。抑制后的活化诺克斯试剂抑制用HCl或酸性介质中用NaCl活化,后者在酸性介质中用CuSO4活化。 CN-无抑制作用。(含铁时除外)。 3、闪锌矿ZnS,含Zn量67.10。 天然可浮性较1、2均弱。 捕收剂用Cu2活化后,用黄药捕收。未活化则黄药无效。 抑制剂CN-、NaCN、kCN、ZnSO4、Na2OS3、Na2S2O3。 特点常有Fe及Cd呈类质同象混入。造成可浮性下降,使抑制更容易。其中Cd需回收,目前Cd均来自从闪锌矿中的回收。 4、铁硫化矿物的可浮性 1)黄铁矿的可浮性 FeS2,含S 53.4。 有一定的天然疏水性,但不充分,其表面适当氧化后有利于黄药捕收。过度氧化则可浮性下降。 捕收剂在弱酸性介质中,用黄药捕收。 机理电化学吸附机理。黄药首先被氧化成双黄药,黄药中的孤对电子和Fe2离子的空轨道结合,通过孤对电子的给予黄药吸附在矿物表面。 抑制剂石灰,氰化物。 活化剂石灰抑制用硫酸、碳酸钠活化,生成硫酸钙及硫酸氢钙解析Ca在矿物表面的吸附; 氰化物抑制用硫酸铜活化。 2)磁黄铁矿 Fe1-xS,x0.10.2,其可浮性弱于黄铁矿,用高级黄药捕收,抑制剂同黄铁矿。 二、铜、铅、锌、硫的分离(各种硫化矿的简称) 1、铜、硫分离 方法取决于矿石性质。主要有下列两种方法。 1)优先浮选适用于致密块状矿石,在比较粗的磨矿粒度条件下Cu与S能充分单体解离。 顺序抑制硫先浮铜。 2)混合浮选适用于矿石中Cu与S结合紧密,Cu与S的集合体粒度较粗,而单体矿物粒度较细时,用混合浮选先甩出合格尾矿,再把Cu与S混合精矿再磨脱药,再选分离。 条件Cu的捕收剂为黄药或黑药,石灰做PH值调整剂及铁矿物的抑制剂,必要时加入氰化物辅助抑制。活化剂只有石灰抑制,用硫酸、碳酸钠活化,生成硫酸钙及硫酸氢钙解析Ca在矿物表面的吸附;配合氰化物抑制后用硫酸和硫酸铜活化。 2、铅、锌分离 优先浮选法,抑制闪锌矿,捕收方铅矿。 捕收剂低级黄药、高级黄药、黑药。通常在碱性介质中分离。 抑制剂CN-、NaCN、kCN、ZnSO4、Na2OS3、Na2S2O3。 活化剂硫酸铜。然后用高级黄药捕收。 3、铜、锌分离 优先浮选法,抑制闪锌矿,捕收铜矿物。分离难度大于2的铅锌分离,应加强对锌的抑制。 捕收剂低级黄药、高级黄药、黑药。通常在碱性介质中分离。 抑制剂CN-、NaCN、kCN、ZnSO4、Na2OS3、Na2S2O3。 活化剂硫酸铜。然后用高级黄药捕收。 4、铜、铅分离 一般为铜铅的混合精矿分离,先脱药,再优先浮选。 脱药方法机械法,再磨脱药,搅拌洗涤脱药,Na2S脱药,活性炭吸附脱药,加温,焙烧等。 1)抑制铅浮铜 适用于次生铜矿,Cu2离子溶解较多不易抑制的情况。 抑制铅诺克斯试剂(K2CrO4KCrO2)和Na2S配合使用; 或氧硫法1SO2或亚硫酸淀粉;2亚硫酸,硫化钠;3硫代硫酸钠三氯化铁或硫酸亚铁;4碳酸钠十硫酸亚铁。 2)抑制铜浮铅 适用于原生铜矿。捕收剂黄药、黑药,PH值99.5,用CaO调整。 抑制剂氰化物及其替代抑制剂。或加温脱药抑制铅4070℃(PH值≤7)。 5、锌、硫分离 采用抑制硫,浮选锌的流程。 捕收剂黄药,锌必须经硫酸铜活化。 抑制剂及PH值调整剂石灰。 提问为什么不能用氰化物抑制1)对锌也抑制;2)与硫酸铜抵消,药剂耗量大。