多层次总线下的煤矿安检设备系统设计(4).doc
多层次总线下的煤矿安检设备系统设计 摘要主要介绍一种适用于中小型煤矿安全生产与监测设备的设计方案。该设备能够实时采集、监测井下工作面的瓦斯浓度、一氧化碳浓度、风速、压力、温度等重要数据和风机、水泵、绞车和电机的开停状态,具有对交流电源的过压、失流、缺相及各种异常、危险情况的报警功能;另外还具有对班次产量的统计和数据存储功能。系统采用低压电力线载波通信及GSM/GPRS无线通信技术进行数据的传输。 关键词低压电力线栽波通信 PL3105C DPSK调制/解调 DSl8820 GSM/GPRS 引 言 近年来,国内煤矿重大安全事故不断发生,尤其是中小煤矿情况更为突出,给国家、人民造成了重大损失。为此,国务院十分重视煤矿安全生产问题,不断加大行业管理力度,逐步形成量化监督管理模式,并相继成立“安全评价”部门机构.实现常年有序、真实有效及信息网络化管理.针对日前行业的发展需要,本方案为中小煤矿实现实时安全监管目标提供了必须的条件与手段。为减少布线的麻烦和投资,本方案中下行通道采用了先进的低压电力线扩频载波通信方式,以井下已布好的电缆作为通信介质进行数据传输。上行通道采用无线网路通信方式,报警记录通过GSM网以短消息形式传到预定手机,或通过GPRS传到上级主管部门计算机以便对事故作出及时处理。 1 硬件结构设计 该煤矿安检设备的基本功能有煤矿各工作面瓦斯浓度的实时采集记录并显示;瓦斯浓度超标报警;井下风速采集记录;负压压力记录;一氧化碳浓度采集记录;温度采集记录;水泵电机工作状态;风机工作状态;绞车工作状态;电源过压报警;失流报警;缺相报警;班次产量记录;开关量采集及设备控制;载波数据传输;GSM/GPRS无线通信;参数设置;数据存储;电源自动切换管理以及系统自检等功能。该系统结构如图1所示。设备分为井下数据采集终端和地面数据集中器两部分。 2 采集终端设计 数据采集终端是用来采集、监测、控制井下设备状态并将数据记录上传给集中器的装置,可同时采集16路的开关量和16路模拟量,并经A/D转换形成数字量,安装在井下防爆箱内。它为各类传感器提供工作电源,并以RS485总线方式通信;与集中器间以载波通信方式进行数据交换。集中器间采用载波通信方式,集中器可定时或随时召唤井下各设备参数并存储。 井下数据采集终端总体功能结构如图2所示。 瓦斯传感器安装在井下各采煤工作面及巷道上,以采集不同点的瓦斯浓度。量程为O~4%CH4,供电方式采取采集器统一直流15 V供电,保障其安全性。当井下瓦斯浓度超标时,采集终端发出报警,报警灯不停闪烁的同时又诵讨语音报警以提示人员进行紧急撤离。同时监控室里的集中器也发出报警,提醒地勤人员采取紧急措施。另外,在报警同时打开风门及风机进行抽风,以降低瓦斯浓度。同样,当井下一氧化碳浓度超标也会发出报警。需注意的是,由于气敏传感器都有一定的使用寿命,因此最好一年更换一次传感器,以保障测量的准确性。 巷道风量的测量采用矿用智能风量传感器,其测量范围为风速0.3~15 m/s;坑道断面积小于30 m2;允许误差小于0.3 m/s;重复性误差读数值1%;输出信号为200~1000 Hz/5~15 Hz或4~20 mA/1~5 mA;工作电压为Dc 15 v;工作电流小于60 mA;换能器工作频率为140~150 kHz。经A/D转换或v/F转换后,可测得其通风量的大小,以了解井下空气质量等。 由于井下到处都是易燃的煤,因此,当温度过高时极易发生自燃的情况;由于井下燃烧为不完全燃烧,因此会产生大量的一氧化碳。上述情况会导致井下人员的一氧化碳中毒,当遇到明火时还会产生爆炸。因此井下温度的测量很重要,尤其对于那些井下较干燥的矿井显得更加必要。本方案中采用美国DalIas公司的增强型单总线数字温度传感器DSl8B20,它仅需一根口线与单片机连接,其测温范围为一55~125℃,精度高,可编程分辨率为9~12位,对应温度分辨率为O.5~O.0625℃。该传感器还具有用户可编程温度报警设置,在12位分辨率时最多在750 ms内可将温度值转换为数字量。根据现场情况可安装多个温度测量点以监控井下温度的变化。 井下巷道均由钢架或木架支撑,为防止冒顶、坍塌等危险情况造成人员重大伤亡和财产损失,井下需要实时巡检巷道压力情况,并及时整修。因此,在承重架下安装压力传感器实现压力应变的实时监测,可及时检测到出现的险情,从而能够避免重大事故的发生。 井下设备大多为防爆型设备,因此价格较一般同类型非防爆设备高许多。当出现过压、失流、缺相或三相不平衡等情况时,常会烧坏电机造成停产,从而造成重大的损失。为尽量杜绝或减少出现此类状况后造成损失,在电机进线上安装精密的电压、电流互感器,实时监测电压电流的变化。当出现非正常变化时及时报警,超出预定值时自动断开电源以保障设备的安全。 井下设备的工作状态是否正常对安全生产非常重要,因此对风机、水泵、绞车等重大设备工作状态的监测是采集终端的另一重要功能。实时监测这些设备的二次触点等开关量,然后经光电隔离、整形、限流电路接到单片机端口,单片机可根据这些开关状态来判定设备的工作状态。另外,主控室还可通过集中器向采集终端下发某设备工作状态命令。 [1]