漳村矿2505综放工作面切顶护巷技术研究.pdf
工程硕士专业学位论文 漳村矿 2505 综放工作面切顶护巷技术研究 Research on Top Cutting and Roadway Protection Technology of 2505 Fully Mechanized Caving Face in Zhangcun Mine 作 者李欢恒 导 师徐金海 教授 中国矿业大学 二〇一九年五月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD323 学校代码 10290 UDC 622 密 级 公开 中国矿业大学 工程硕士专业学位论文 漳村矿 2505 综放工作面切顶护巷技术研究 Research on Top Cutting and Roadway Protection Technology of 2505 Fully Mechanized Caving Face in Zhangcun Mine 作 者 李欢恒 导 师 徐金海 教授 申请学位工程硕士专业学位 培养单位 矿业工程学院 学科专业 矿业工程 研究方向 矿山压力与岩层控制 答辩委员会主席 郑西贵 评 阅 人 盲审 万方数据 致谢致谢 蓦然回首,两年的矿大时光转眼即逝,无数过往在脑海里浮现,有失败的泪 水,有成功的喜悦;无数相遇之人让我心怀感激,有教育我的老师,养育我的亲 人,陪伴我的朋友。回忆中的点点滴滴就如同校园里的喧嚣与静谧一样,仿佛就 发生在昨日,恍恍惚惚,我要离开了。 首先,我要对我的导师徐金海老师说一声谢谢,能成为您的学生是我今生的 荣耀。忘不了第一次师生相见,您和蔼的笑容化解了我内心的紧张与不安;忘不 了您对我论文悉心的指导,您的点拨使我迷茫的思路豁然开朗;也忘不了雨天您 开车送我们回宿舍,让我在这个原本陌生的城市,感觉到家的温暖。 感谢矿业学院及煤炭资源与安全开采国家重点实验室各位老师, 感谢课题组 李冲老师与何青源老师, 感谢课题组 B322 里一起努力奋斗的师兄弟对我的帮助。 感谢大师兄曹悦博士,在无数个出差夜晚,我们畅谈人生,畅谈理想,两年来, 我们建立深厚的师兄弟情谊,永不能忘。同时感谢课题组师兄张跟柱硕士、陈秋 宇硕士、张兵兵硕士、苏赛硕士、常志强硕士、徐森茂硕士、王瑞杰硕士,同级 硕士陶鑫,师弟张帅、张晓悟、康志鹏、李柏壮硕士,感谢你们营造的和谐愉悦 积极向上的课题组氛围,使我愉快的度过了我的硕士生涯。 感谢山西潞安常村煤矿生产科科长秦勇等在常村矿科研实践过程中给予的 帮助; 感谢漳村煤矿生产科科长张亮、技术员张永军等人在毕业论文现场实践过 程中给予的大力支持。 感谢我的父母,虽然你们学历不高,但让我懂得做人的道理,让我在充满诱 惑的成长路上学会坚强与独立,你们永远是我背后最强大的精神支柱。 感谢生命中让我遇见的可爱的人儿,愿我们始终持之以恒,岁岁长相见。 不忘初心,继续前进,始终坚信越努力,越幸运,始终坚持信念不失,奋斗 不止。 李欢恒 2019 年 5 月于矿大南湖 万方数据 I 摘摘 要要 综放工作面末采期间停采线煤柱留设尺寸往往凭经验确定, 缺乏相应的设计 依据,不仅会造成煤炭资源的浪费,还有可能导致临近巷道变形较大。同时,工 作面停采后上覆岩层形成较长的以煤柱为支点的悬臂梁, 煤柱承受较大的支撑力, 不但影响煤柱的完整性, 更有可能破坏采区大巷的稳定性。 本文以漳村煤矿 2505 综放工作面为工程背景,针对煤柱留设尺寸设计以及切顶护巷技术存在的问题, 综合运用现场调研、理论分析、数值模拟、现场实践等方法,对 2505 综放工作 面切顶护巷技术进行研究。主要研究内容及成果如下 (1)通过理论分析的方法对综放面超前支承压力分布规律进行分析。综放 工作面超前支承压力呈先上升后下降的趋势,最终趋于原岩应力, 其影响范围约 为工作面前方 70m 左右。 (2)通过几何模型分析确定水压致裂机理为钻孔孔壁在高压水压力与原 岩应力的共同作用下,孔壁某处产生的切向拉应力大于该处抗拉强度,从而在孔 壁产生裂隙的现象。 给出水力切顶的技术原理, 确定水力裂纹的形态及扩展方向、 水力裂纹的起裂人造若面以及水力切顶断裂位置,形成水力切顶施工工艺。 (3) 通过理论分析和数值模拟的方法对 2505 工作面停采线煤柱的合理尺寸 进行研究,得出停采线煤柱理论留设尺寸应为 80m,但在切顶处理后,当停采线 煤柱尺寸为 70m 时,即可保证回采巷道的稳定,满足巷道安全生产的要求。 (4)基于以上的研究成果,给出水力切顶设计方案,并在漳村煤矿 2505 综 放工作面进行工业性实践。应用结果显示,2505 综放工作面水力切顶技术有效 的破碎了悬垂顶板,保护了 25 采区大巷的稳定性,减少了煤炭资源的损失,具 有显著的经济效益与社会效益。 本论文由图 55 幅,表 5 个,参考文献 85 篇。 关键词关键词煤柱留设尺寸;超前支承压力分布规律;水压致裂;数值模拟 万方数据 II Abstract The size of the stop-line coal pillars at the end of the mining period is often determined by experience. The lack of corresponding design basis will not only cause waste of coal resources, but also lead to large deation of adjacent roadways. At the same time, after the working face is stopped, the overburden layer s a long cantilever beam with coal pillar as the fulcrum. The coal pillar bears a large supporting force, which not only affects the integrity of the coal pillar, but also may damage the stability of the mining roadway. This paper takes the 2505 fully mechanized caving face of Zhangcun Coal Mine as the engineering background, and solves the problems of coal pillar design and the technology of cutting roof protection technology. Based on field investigation, theoretical analysis, numerical simulation, field practice and other s, the cutting technology of 2505 fully mechanized caving face is studied. The main research contents and results are as follows 1 By means of theoretical analysis, the distribution law of pressure of advanced support in fully mechanized caving face is analyzed.The leading bearing pressure of fully mechanized caving working face shows a trend of first rising and then falling, and finally tends to the original rock stress, whose influence range is about 70m in front of the working face. 2 Through the analysis of the geometric model, it is determined that the mechanism of hydraulic fracturing is as follows under the combined action of high pressure water pressure and original rock stress, the tangential tensile stress generated at a certain place of the borehole wall is greater than the tensile strength at that place, thus resulting in the phenomenon of fracture in the borehole wall. In this paper, the technical principle of hydraulic cutting top is given, the and propagation direction of hydraulic crack, artificial surface of hydraulic crack initiation and fracture position of hydraulic cutting top are determined, and the construction technology of hydraulic cutting top is ed. 3 Through theoretical analysis and numerical simulation, the reasonable size of stop-line coal pillar in 2505 working face is studied, and it is concluded that the theoretical size of stop-line coal pillar should be 80m, but after the top-cutting treatment, when the stop-line coal pillar size is 70m, the stability of stop-line coal pillar can be guaranteed and the requirements of safe production of roadway can be met. 4 Based on the above research results, the hydraulic cutting design is given, and 万方数据 III the industrial practice is carried out in the 2505 fully mechanized caving face of Zhangcun Coal Mine. The application results show that the hydraulic cutting technology of the 2505 fully mechanized caving face effectively breaks the overhanging roof, protects the stability of the 25 mining roads, reduces the loss of coal resources, and has significant economic and social benefits. This paper consists of 55 figures, 5 tables and 85 references. Key words coal pillar set size; the distribution law of lead abutment pressure; Hydraulic fracturing; The numerical simulation 万方数据 IV 目目 录录 摘摘 要要 ........................................................................................................................ I I 目目 录录 ...................................................................................................................... IVIV 图清单图清单 .................................................................................................................. VIIIVIII 表清单表清单 .................................................................................................................... XIIXII 变量注释表变量注释表 .......................................................................................................... XIIIXIII 1 1 绪论绪论 ........................................................................................................................ 1 1 1.1 研究背景与意义 .................................................. 1 1.2 国内外研究现状 .................................................. 2 1.3 主要研究内容与目标 .............................................. 6 1.4 研究方法与技术路线 .............................................. 7 2 2 综放工作面超前支承压力分布规律分析综放工作面超前支承压力分布规律分析 ............................................................ 9 9 2.1 工程概况 ........................................................ 9 2.2 综放面超前支承压力理论分析 ..................................... 13 2.3 本章小结 ....................................................... 16 3 3 综放面切顶机理与控制技术综放面切顶机理与控制技术 .............................................................................. 1717 3.1 切顶方法比较 ................................................... 17 3.2 水压致裂机理 ................................................... 18 3.3 水力切顶控制技术 ............................................... 19 3.4 水力切顶施工工艺 ............................................... 24 3.5 本章小结 ....................................................... 27 4 4 综放面停采线煤柱留设尺寸的确定综放面停采线煤柱留设尺寸的确定 ................................................................. . 2828 4.1 综放工作面停采线煤柱留设尺寸的理论分析 ......................... 28 4.2 停采线煤柱合理尺寸数值模拟分析 ................................. 30 4.3 本章小结 ....................................................... 34 5 5 工业性试验工业性试验 .......................................................................................................... 3535 5.1 水压致裂切顶方案 ............................................... 35 5.2 水压致裂切顶系统 ............................................... 44 5.3 切顶效果监测与评价 ............................................. 46 5.4 本章小结 ....................................................... 50 万方数据 V 6 6 主要研究结论主要研究结论 ...................................................................................................... 5151 参考文献参考文献 .................................................................................................................. 5353 作者简历作者简历 .................................................................................................................. 5858 学位论文原创性声明学位论文原创性声明 .............................................................................................. 5959 学位论文数据集学位论文数据集 ...................................................................................................... 6060 万方数据 VI Content Abstract ........................................................................................................................ II Content ....................................................................................................................... VI List of Figures ......................................................................................................... VIII List of Tables ............................................................................................................ XII List of Variables ..................................................................................................... XIII 1 Introduction ............................................................................................................... 1 1.1 Research Background and Significance ................................................................... 1 1.2 Research Status at Home and Abroad ...................................................................... 2 1.3 Main Research Contents and Objectives ................................................................. 6 1.4 Research and Technical Route .................................................................... 7 2 Analysis on distribution law of lead abutment pressure in Fully Mechanized Caving Face .................................................................................................................. 9 2.1 Project Summary ...................................................................................................... 9 2.2 Theoretical analysis of lead abutment pressure of fully mechanized caving face . 13 2.3 Chapter Summary .................................................................................................. 16 3 Cutting Mechanism and Control Technology of Fully Mechanized Caving Face ...................................................................................................................................... 17 3.1 Cutting Top Comparison .......................................................................... 17 3.2 Hydraulic Fracturing Mechanism .......................................................................... 18 3.3 Hydraulic Top Cutting Control Technology .......................................................... 19 3.4 Hydraulic Top Cutting Process .............................................................................. 24 3.5 Chapter Summary .................................................................................................. 27 4 Determination of Coal Pillar Setting Size on Stop-line of Fully Mechanized Caving Face ................................................................................................................ 28 4.1 Theoretical Analysis on the Reserved Size of Coal Pillar on Stop-line of Fully Mechanized Caving Face ............................................................................................. 28 4.2 Numerical Simulation Analysis of Reasonable Size of Coal Pillar on Stop-line .. 30 4.3 Chapter Summary .................................................................................................. 34 5 Commercial Test ...................................................................................................... 35 5.1 Hydraulic Fracturing Cutoff Plan .......................................................................... 35 万方数据 VII 5.2 Hydraulic Fracturing and Cutting Top System ...................................................... 44 5.3 Monitoring and uation of Cutting Top Effect ................................................. 46 5.4 Chapter Summary .................................................................................................. 50 6 Main Research Conclusions ................................................................................... 51 Reference .................................................................................................................... 53 Authors’ Resume ........................................................................................................ 58 Declaration of Thesis Originality ............................................................................. 59 Thesis Data Collection ............................................................................................... 60 万方数据 VIII 图清单图清单 List of Figures 图序号 图名称 页码 图 1-1 放顶煤开采与单一煤层开采支承压力分布对比 3 Figure 1-1 Distribution comparison of support pressure between caving and top coal mining and single coal seam mining 3 图 1-2 技术路线图 8 Figure 1-2 Technical route 8 图 2-1 漳村煤矿地理位置图 9 Figure 2-1 Zhangcun coal mine geographical location map 9 图 2-2 2505 工作面末采平面图 10 Figure 2-2 Planned plan for 2505 working face 10 图 2-3 2505 工作面顶底板综合柱状图 10 Figure 2-3 Comprehensive histogram of roof and floor of 2505 working face 10 图 2-4 25 皮带延伸巷支护图 12 Figure 2-4 25 belt extension lane support diagram 12 图 2-5 末采期间 25 皮带延伸巷的变形示意图 13 Figure 2-5 Deation diagram of 25 belt extension roadway during the last mining period 13 图 2-6 煤体弹塑性变形区域分布及超前支承压力分布 14 Figure 2-6 The regional distribution of elastic-plastic deation of coal body and the distribution of advanced bearing pressure 14 图 3-1 原岩应力中任意点应力图 18 Figure 3-1 stress diagram at any point in the original rock stress 18 图 3-2 水力致裂原理示意图 19 Figure 3-2 Schematic diagram of hydraulic fracturing principle 19 图 3-3 顶板分层示意图 20 Figure 3-3 Diagram of roof layer 20 图 3-4 顶板切顶示意图 20 Figure 3-4 Schematic diagram of roof cutting top 20 图 3-5 轴向水力裂纹 21 Figure 3-5 Axial hydraulic cracking 21 图 3-6 径向水力裂纹 21 Figure 3-6 Radial hydraulic crack 21 图 3-7 用于制造轴向水力裂隙射孔图 22 Figure 3-7 Used for making axial hydraulic fracture perforation diagrams 22 图 3-8 初始裂隙沿射孔起裂扩展形成完整轴向水力裂隙 22 Figure 3-8 The initial fracture expands along the perforation initiation to a complete axial hydraulic fracture 22 图 3-9 预制横向切槽作为径向水力裂纹起裂的人造弱面图 23 Figure 3-9 Precast transverse grooving is used as the artificial weak surface 23 万方数据 IX diagram for the initia