深部半圆拱巷道预制锚固结构荷载位移全过程试验研究.pdf
硕士学位论文 深部半圆拱巷道预制锚固结构荷载位移全过程 试验研究 Experimental Study on Load and Displacement of Prefabricated Anchorage Structure in Deep Semicircle Arch Roadway 国家自然科学基金重点项目国家自然科学基金重点项目((51734009))资助资助 国家重点国家重点研发研发计划项目(计划项目(No.2017YFC0603001)资助)资助 作者王 珂 导师靖洪文 教授 中国矿业大学 二〇一九年五月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰写的学位论文的使 用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位论文的部分使用权, 即①学校档案馆和图书馆有权保留学位论文的纸质版和电子版,可以使用影印、缩印或扫描等复 制手段保存和汇编学位论文;②为教学和科研目的,学校档案馆和图书馆可以将公开的学位论文作 为资料在档案馆、图书馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意 中国国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD353 学校代码 10290 UDC 624 密 级 公开 中国矿业大学 硕士学位论文 深部半圆拱巷道预制锚固结构荷载位移全过程 试验研究 Experimental Study on Load and Displacement of Prefabricated Anchorage Structure in Deep Semicircle Arch Roadway 国家自然科学基金重点项目国家自然科学基金重点项目51734009资助资助 国家重点国家重点研发研发计划项目(计划项目(No.2017YFC0603001)资助)资助 作 者 王 珂 导 师 靖洪文 申请学位 工学硕士学位 培养单位 力学与土木工程学院 学科专业 岩土工程 研究方向 巷道围岩稳定控制 答辩委员会主席 李元海 评 阅 人 马占国、翟明华 二〇一九年五月 万方数据 致致 谢谢 本文是在靖洪文教授的悉心指导下完成的,从论文的选题、试验方案的制定直至论 文的撰写无不凝聚着导师的心血。 导师以其严谨的学术态度以及对课题运筹帷幄的能力 和对学科前沿的高瞻远瞩为学生指引了论文研究的方向, 并及时解决学生在课题研究期 间所遇到的迷茫与困惑,没有导师对学生的悉心相授、启发以及鞭策,论文不可能顺利 得已完成。在此,特向恩师致以最真诚的感谢和最诚挚的敬意。 感谢蒋斌松教授、李元海教授、韩立军教授、杨圣奇教授、王迎超教授、蔚立元教 授、 张后全副教授、 张强副教授和孟庆彬老师在论文选题过程中给予的诸多指导和帮助。 感谢课题组苏海健副教授、孟波老师、尹乾老师、齐燕军老师、陈坤福副教授在试 验结果分析及论文书写过程中的指导和帮助。 感谢课题组丁书学博士、朱文心博士、朱栋博士、杜明瑞博士、韩观胜博士、高远 博士、史新帅博士、赵振龙博士、卜若迪硕士、胡涛硕士、李林林硕士、吴应杰硕士、 杜跃硕士、顾晓伟硕士、符光平硕士、周泽敷硕士、李峦硕士以及同窗陈伟强硕士、胡 成果硕士、贺立新硕士在试验过程中以及试验数据处理中给予的大力帮助。 感谢我的室友沙学伟、刘青宏、岳江以及三年来朝夕相处的同学,感谢他们在学习 和生活中给予的帮助。 感谢父母对我的养育之恩和对我学业的关心和支持,祝他们健康长寿。 感谢论文所引用文献的作者。 感谢各位专家、教授在百忙之中对论文的审阅、答辩与批评指导。 万方数据 I 摘摘 要要 深部巷道围岩变形破坏不仅与地应力、围岩强度有关,更与围岩支护加固的承载结 构有关,围岩破坏并不等于巷道整体失稳,因此从巷道围岩承载结构失稳的角度来研究 更有针对性。围岩承载结构的失稳离不开其所受应力状态,研究结构失稳首先要研究其 所受荷载和位移对应的关系。 为了得到锚固结构失稳与其所受荷载的关系以及进一步揭 示锚杆与围岩相互作用形成锚固结构承载体的机理, 本文结合国家自然科学基金重点项 目 “深部开采与巷道围岩稳定控制信息化基础理论研究 (51734009) ” 和国家重点研发计 划子课题(2017YFC0603001) “千米深井强采动巷道围岩劣化与强度衰减规律”以中煤 新集能源口孜东煤矿-967m 水平西翼轨道大巷为研究对象,综合运用物理模拟试验、理 论分析及数值模拟等研究手段, 对预制半圆拱形锚固结构承载能力与位移关系以及不同 锚杆支护参数下锚杆预紧力形成的承载拱结构效应进行了系统的研究。 主要研究内容及 结论如下 (1) 根据深部巷道围岩峰后变形条件, 研制以河砂、 水泥及石膏不同配比以满足相 似物理模拟试验要求;自主研制了预制锚固结构模具,开展了深部巷道预制锚固结构承 载体在不同锚杆密度条件下受力变形失稳的模型试验, 首次获得了 3 种不同锚固结构全 过程的荷载-位移曲线,提出了“单位顶底板相对移近量的平均荷载变化量”来表示锚 固结构承载体能力的判据; 分析了锚固结构承载体表面径向应力和切向应力的演化规律; 采用课题组的 PhotoInfor V7.2 数字照相量测分析系统,揭示了锚固结构承载体破坏过程 位移场的演化规律。 (2)在获得上述 3 种预制不同锚固结构试验结果的基础上,基于莫尔库伦屈服准 则对锚固结构承载体的强度和厚度的影响因素进行了分析;研究了锚杆的与巷道半径、 锚杆参数、锚杆材质以及围岩的黏聚力、内摩擦角等因素对锚固结构承载体强度和厚度 的影响规律;获得了不同锚杆密度条件下的锚固结构承载体最终破坏模式和机制。 (3)基于预制不同锚固结构荷载位移试验全过程,建立了 FLAC3D数值模型,开展 了锚固结构承载特性的研究,系统分析了锚杆预紧力、直径、密度、长度等参数对锚杆 预紧力所扩散应力场的强度和范围的影响规律,揭示了锚固结构承载能力的形成机理, 获得了不同锚杆参数承载拱结构的强度和厚度的变化规律。 (4) 根据研究结论, 对口孜东煤矿-967m 水平西翼轨道大巷现场实测了地应力以及 松动圈厚度值,优化了支护参数,提出了“让压注浆主、被动协同支护”稳定控制理 念。新方案不仅使得锚固结构起到整体锚固的作用,强度和厚度得到了提升,现场工业 性试验取得了良好的支护效果。 该论文有图 64 幅,表 15 个,参考文献 100 篇。 关键词关键词深部巷道;预制锚固结构;荷载位移全过程曲线;承载拱结构效应 万方数据 II ABSTRACT Deation and failure of surrounding rock of deep roadway are not only related to ground stress and strength of surrounding rock, but also to bearing structure of surrounding rock support and reinforcement. The failure of surrounding rock is not equal to the overall instability of roadway, so it is more pertinent to study from the angle of instability of bearing structure of surrounding rock of roadway. The instability of surrounding rock bearing structure can not be separated from its stress state. To study the structural instability, the first thing is to study the relationship between the load and displacement. In order to obtain the relationship between the instability of anchorage structure and its load and further reveal the mechanism of the interaction between anchor and surrounding rock ing the bearing body of anchorage structure, this paper combines the key project of National Natural Science Foundation of China “Basic Theory Research on Ination Control of Deep Mining and Roadway Surrounding Rock Stability“ 51734009 and the sub-project of National Key Research and Development Program 2017YFC0603001 “Thousand-meter Deep Well“ The law of surrounding rock deterioration and strength attenuation of roadway under strong mining is studied in the West Wing track roadway at - 967m level in Kouzidong Coal Mine of China Coal Xinji Energy Source. By means of physical simulation test, theoretical analysis and numerical simulation, the bearing capacity and displacement relationship of pre-fabricated semi-circular arch anchorage structure and the bearing arch structure effect ed by pre-tightening force of bolt under different parameters of bolt support are studied comprehensively. A systematic study should be carried out. The main research contents and conclusions are as follows 1 According to the post-peak deation conditions of surrounding rocks in deep roadways, different proportions of river sand, cement and gypsum are developed to meet the requirements of similar physical simulation tests; prefabricated anchorage structure moulds are developed independently, and model tests of bearing bodies of prefabricated anchorage structures in deep roadways under different anchor density conditions are carried out. For the first time, the loads of three different anchorage structures in the whole process are obtained. Load-displacement curves are presented, and the criterion of expressing the bearing capacity of anchored structures by “average load variation of relative closeness of roof and floor“ is proposed. The evolution laws of radial and tangential stresses on the surface of the bearing body of anchored structures are analyzed. The evolution rules of displacement field during the failure process of the bearing body of anchored structures are revealed by using PhotoInfor V7.2 digital photogrammetry analysis system of the evolution law. 2 Based on the experimental results of the three precast anchorage structures mentioned 万方数据 III above, the factors affecting the strength and thickness of the bearing body of the anchorage structure are analyzed based on the Mohr-Coulomb yield criterion, and the influences of the radius of the roadway, the parameters of the bolt, the material of the bolt, the cohesion of the surrounding rock and the angle of internal friction on the strength and thickness of the bearing body of the anchorage structure are studied. The ultimate failure mode and mechanism of the bearing body of anchorage structure under different anchor density conditions are obtained. 3 Based on the whole process of load-displacement test of prefabricated different anchorage structures, FLAC3D numerical model is established and the load-bearing characteristics of anchorage structures are studied. The influence of parameters such as pre- tightening force, diameter, density and length of anchor bolts on the strength and scope of diffusion stress field is systematically analyzed. The ing mechanism of load-bearing capacity of anchorage structures is revealed, and the load-bearing arches with different parameters of anchor bolts are obtained. The variation of strength and thickness of the structure. 4 According to the research conclusion, the in-situ stress and the thickness of loosening zone were measured in west-wing track roadway of - 967m level in Kouzidong Coal Mine, and the support parameters were optimized. The stability control concept of “yielding grouting active and passive coordinated support“ was put forward. The new scheme not only makes the anchorage structure play an integral anchorage role, but also enhances the strength and thickness of the anchorage structure. The field industrial test has achieved good support effect. The paper has 64 figures, 15 tables and 100 references. Keywords deep roadway; prefabricated anchorage structure; load-displacement curve; structural effect of bearing arch 万方数据 IV 目目 录录 摘摘 要要 ......................................................................................................................................... I 目目 录录 ...................................................................................................................................... IV 图清单图清单 ................................................................................................................................... VIII 表清单表清单 .................................................................................................................................... XII 变量注释表变量注释表 ........................................................................................................................... XIII 1 绪论绪论 ........................................................................................................................................ 1 1.1 问题的提出及研究意义 ..................................................................................................... 1 1.2 国内外研究现状 ................................................................................................................. 2 1.3 主要研究的内容及技术路线 ............................................................................................. 8 2 深部巷道围岩模拟相似材料及预制锚固结构试验系统的研制深部巷道围岩模拟相似材料及预制锚固结构试验系统的研制 ..................................... 10 2.1 工程背景 ........................................................................................................................... 10 2.2 相似材料的选择及相应的物理力学测试 ....................................................................... 10 2.3 预制锚固结构模具研制及锚杆选取 ............................................................................... 17 2.4 本章小结 ........................................................................................................................... 19 3 深部巷道预制不同锚固结构荷载位移全过程试验研究深部巷道预制不同锚固结构荷载位移全过程试验研究 ................................................. 20 3.1 物理模型试验设计 ........................................................................................................... 20 3.2 试验方案 ........................................................................................................................... 23 3.3 不同锚杆密度预制锚固结构荷载位移全过程试验研究 ............................................... 26 3.4 锚固结构承载体破坏模式与机制 ................................................................................... 44 3.5 锚固结构承载体力学分析 ............................................................................................... 46 3.6 本章小结 ........................................................................................................................... 50 4 深部巷道锚固结构承载能力影响因素敏感性数值模拟深部巷道锚固结构承载能力影响因素敏感性数值模拟 ................................................. 52 4.1 数值模拟软件选取 ........................................................................................................... 52 4.2 数值计算模拟内容、方案及数值模型的建立 ............................................................... 52 4.3 不同锚固结构承载能力影响因素敏感性分析 ............................................................... 54 4.4 本章小结 ........................................................................................................................... 66 5 工程应用工程应用 .............................................................................................................................. 68 5.1 西翼轨道大巷地质条件 ................................................................................................... 68 5.2 巷道围岩松动圈探测及地应力实测 ............................................................................... 68 万方数据 V 5.3 巷道围岩变形分析 ........................................................................................................... 71 5.4 支护参数确定 ................................................................................................................... 71 5.5 支护效果分析 ................................................................................................................... 72 5.6 本章小结 ........................................................................................................................... 73 6 结论与展望结论与展望 .......................................................................................................................... 74 6.1 结论 ................................................................................................................................... 74 6.2 展望 ................................................................................................................................... 76 参考文献参考文献 .................................................................................................................................. 77 作者简历作者简历 .................................................................................................................................. 83 万方数据 VI Contents Abstract ...................................................................................................................................... I Contents ................................................................................................................................... IV List of Figures ...................................................................................................................... VIII List of Tables ......................................................................................................................... XII List of Variables ................................................................................................................... XIII 1 Introduction ........................................................................................................................... 1 1.1 Problem Posing and Research Significance ......................................................................... 1 1.2 Present Research Status at Home and Abroad ..................................................................... 2 1.3 Main Research Contents and Technical Route ..................................................................... 8 2 Development of Similar Materials and Prefabricated Anchorage Structure Test System for Surrounding Rock of Deep Roadway ............................................................................. 10 2.1 Engineering Background .................................................................................................... 10 2.2 Selection of Similar Materials and Corresponding Physical and Mechanical Tests .......... 10 2.3 Development of Prefabricated Anchor Structure Mould and Selection of Anchor Bolt .... 17 2.4 Chapter Conclusion ............................................................................................................ 19 3 Model Test Study on Bearing Body of Anchorage Structure with Different Bolt Density in Deep Roadway .................................................................................................................... 20 3.1 The Physical Model Experiment Design ............................................................................ 20 3.2