综采放顶煤液压支架智能控制技术研究.pdf
分类号分类号________ 学校代码学校代码 83311 83311 UDC ________ 密密 级级 博士学位论文博士学位论文 综采放顶煤综采放顶煤液压支架液压支架智能控制技术研究智能控制技术研究 Study on the Intelligent Control Technology of Fully Mechanized top-caving hydraulic support 研研 究究 生生 马英马英 导导 师师 王国法王国法 研究员研究员 学科专业学科专业 采矿工程采矿工程 研究方向研究方向工作面支护技术与设备工作面支护技术与设备 培养单位培养单位煤科总院开采设计研究分院煤科总院开采设计研究分院 煤炭科学研究总院 2015 年 5 月 万方数据 煤炭科学研究总院博士学位论文 I 摘摘 要要 论文以大唐龙王沟煤矿大采高综放智能化项目为工程依托,从分析大采高综放 工作面液压支架与围岩顶煤耦合关系入手,应用随机散体介质流理论研究解析放顶 煤工艺过程,提出综采放顶煤液压支架智能化放煤控制方法,对综放液压支架自适 应控制系统进行研究,实现对支架的工作姿态、受力状态、支护质量和放煤工况等 实时监测和智能耦合控制目标。 根据大唐龙王沟煤矿工作面煤层赋存条件,设计研制了 ZFY18800/28/53D 型两 柱掩护式放顶煤液压支架,以本支架为模型,分析解析大采高放顶煤液压支架围 岩顶煤耦合关系,建立两柱大采高放顶煤液压支架与围岩顶煤的智能耦合模型,根 据本液压支架在工作过程中常出现的姿态,推导出两柱放顶煤液压支架姿态调整算 法公式,该算法可以准确的测算出液压支架在不同姿态下合力作用点的位置,解决 了大采高放顶煤液压支架合力作用点位置始终难以确定的难题,液压支架支护质量 智能监控和电液控制系统以该算法为基础,通过智能感知、智能决策和电液执行过 程,实现液压支架姿态的自动调整,为放顶煤液压支架实现智能化控制奠定基础。 以放矿学理论为基础,结合综采放顶煤实际过程,采用随机介质放矿理论进行 研究放顶煤过程,分别在采放比为 11、12 与 13 和放煤步距两刀一放的条件 下对单轮顺序放煤、单轮间隔放煤、多轮顺序放煤、多轮间隔放煤和分段多窗口多 轮放煤 5 种不同放煤方式进行数值模拟,确定在合理的采放比、放煤步距条件下的 最佳放煤方式,实现高回收率、低含矸率的高效放煤目标。 提出两种自动化智能化放煤控制方式一种方法是通过总结长期综放实践经验, 制定了放顶煤时序控制与人工干预协调控制的自动化放煤控制机制,通过液压支架 电液控制系统实现自动化放煤,这是一种实用高效的综放控制方法。针对放煤过程 中出现过放状况和欠放问题,提出了基于果蝇优化算法和 RBF 混合算子的放顶煤时 间预测方法。采用径向神经网络建立以开采深度、煤层强度、顶煤节理裂隙、夹矸 层厚度等因素作为输入,以散体流动参数 2211 ,,,,,为输出的神经网络模型, 为提高神经网络的预测精度,采用果蝇优化算法对网络中的 Spread 进行优化;将 煤块视为连续流动的随机介质,应用随机介质放矿理论,通过斜壁边界散体移动概 率密度方程,建立以神经网络预测输出的散体流动参数为变量的放顶煤时间预测模 万方数据 煤炭科学研究总院博士学位论文 II 型,最后通过实验对模型预测精度进行验证,该算法实现放顶煤时间变化的自适应, 为综放液压支架实现放煤过程的智能化决策奠定了基础。 另一种方法是通过在支架尾梁上安装振动信号传感器,监测顶煤冒放过程,识 别煤岩,智能决策放顶煤控制机制,通过液压支架电液控制系统实现智能化放顶煤, 对此方法进行了井下试验研究,但仍需在实际放煤过程不断的发展完善。 研发了液压支架支护质量综合监测保障系统,与支架电液控制系统集成,形成 综放液压支架自适应控制系统,液压支架支护质量综合监测保障系统通过液压支架 姿态无线微功耗自供电实时监测、液压支架受力状态无线微功耗自供电实时监测、 液压支架支护质量实时监测与预警、液压支架支护质量综合保障信息四部分实现了 对液压支架综合支护质量的智能监测,该系统经过现场试验及大量实验数据处理分 析,表明该系统运行稳定、可靠,是实现综放液压支架智能化控制的重要组成部分。 论文最后得出了有关研究结论和未来进一步研究的方向。 关键词关键词放顶煤;液压支架;智能控制;散体介质流;时序控制;自适应控制监 测系统 万方数据 煤炭科学研究总院博士学位论文 III ABSTRACT With the help of the Datang Longwanggou coal mine high caving intelligent project, the paper analyzed the coupling relationship of support-surrounding rock in order to realize intelligent coupling and researched the technological process for caving based on the random loose-medium-flow theory. According to the above research,the paper put forward the intelligent control for fully mechanized top coal caving mining faces and developed the intelligent monitoring device for caving hydraulic support,which realized real-time monitoring for working posture,stress state,supporting quality and working condition of coal caving of hydraulic support and intelligent coupling control. According to the coal seam occurrence condition for working face of datang longwang coal mine,ZFY18800/28/53D two leg shield caving hydraulic support has been designed. The paper using the hydraulic support as model,analyzed the top coal caving hydraulic coupling relationship of the support- surrounding rock and set up the intelligent coupling model between top-coal caving hydraulic support and the surrounding caving rock. According to the posture of ZFY18800/28/53D two leg shield caving hydraulic support which is often appeared in the working process,the two leg shield caving hydraulic support posture adjustment algorithm was calculated. The algorithm can accurately calculate the hydraulic support resultant force point,so the problem which has always been difficult to determine for high caving hydraulic support has been solved. Based on this algorithm,the hydraulic support supporting quality intelligent monitoring and electro-hydraulic control system can automatically adjust the gesture of the hydraulic support by intelligent perception,intelligent decision-making and electric liquid cute process,which has lay the foundation for the intelligent caving. Based on the Continuum Drawing theory,combined with the actual process of fully mechanized top coal caving,the research of top coal caving process was taken using the stochastic medium drawing theory. Under the condition of 11,12 and 13 caving ratio and one caving meanwhile with two coal cutting caving pace,the numerical simulation of the 5 different caving way, single round sequential caving, single round interval caving, multi round sequential caving,multi round interval caving and segmented multi window multi round caving, was done. In this way, the best caving under the reasonable cutting caving ratio and caving pace is determined,which has realized the efficient coal caving goal of high recovery rate and low refuse content. Two kinds of intelligent automation coal control mode were put forward in this paper On the one hand, based on the long-term practical experience for caving coal, Automatic 万方数据 煤炭科学研究总院博士学位论文 IV coal control mechanism combined sequential control with artificial interference coordination control was established,which could realize automatic caving coal by hydraulic support electro-hydraulic control system. This is a practical and efficient fully mechanized control . Aimed at the problem of excessive caving and insufficient caving in the caving process,the caving time forecasting was put forward based on the combine of Drosophila optimization algorithm and the stochastic medium drawing theory. The neural network with RBF neural network is established which takes the mining depth,strength of coal seam,the top coal jointing crack and gangue thickness as parameter,and takes the loose flow parameters such as 2211 ,,,,, as the output parameter. In order to improve the prediction accuracy of neural network,Drosophila optimization algorithm was adopted to optimize the network Spread. Coal will be regarded as random medium continuous flow,using the stochastic medium drawing theory, through the inclined wall boundary loose movement probability density equation,the coal caving time prediction model was established,which taking the neural network prediction of granular flow parameters as variable. Finally,through the experimental verification on the prediction accuracy of the model,the algorithm realized the self-adoption with the caving time changes,so as to lay a foundation for the intelligent decision-making of top coal caving process. On the other hand,based on the monitoring data for process of caving coal which was collected from the vibration signal sensor Installed on the tail beam of hydraulic support, the paper put forward Intelligent decision-making behavior control mechanism by Coal and rock identification,which could realize automatic caving coal by hydraulic support electro-hydraulic control system.Experimental study on the underground was achieved for the above , which still need to be continuously developed in the actual process of coal. Hydraulic support supporting quality comprehensive monitoring and security system was developed. This system could realize intelligent monitoring of hydraulic supports comprehensive support quality which contains four big functions Hydraulic support posture real-time monitoring based on the wireless micro-power and self-powered technology,hydraulic support pressure real-time monitoring based on the wireless micro-power and self-powered technology,support quality real-time monitoring and early warning,hydraulic support supporting quality comprehensive security ination real time display. According to the field test and amount of experimental data processing, the system was proved to be stable, reliable and accurate, so it can be important part of fully mechanized caving face intelligent control system. 万方数据 煤炭科学研究总院博士学位论文 V At the end of the paper,the relevant research conclusions and future directions for further research has been proposed. Key words coal caving; hydraulic support; intelligent control; loose-medium-flow; Identification of coal and gangue;Adaptive control;monitoring system 万方数据 煤炭科学研究总院博士学位论文 1 目目 录录 1 1 绪论绪论 .................................................................................................................................. 1 1.1 研究背景及意义 ................................................................................................... 1 1.1.1 选题背景........................................................................................................ 1 1.1.2 目的与意义.................................................................................................... 2 1.2 放顶煤技术发展概论 ........................................................................................... 2 1.3 论文研究内容与技术路线 ................................................................................... 4 1.3.1 主要研究内容................................................................................................ 4 1.3.2 放顶煤液压支架与围岩顶煤智能耦合控制原理和方法............................ 4 1.3.3 智能化放顶煤工艺优化研究........................................................................ 6 1.3.4 自动化智能化放煤控制方法研究................................................................ 8 1.3.5 综放液压支架自适应控制系统研究.......................................................... 10 1.4 技术路线与研究手段 ......................................................................................... 10 1.4.1 技术路线...................................................................................................... 10 1.4.2 研究手段...................................................................................................... 11 2 2 放顶煤液压支架与围岩耦合智能控制原理和方法放顶煤液压支架与围岩耦合智能控制原理和方法 .................................................... 12 2.1 放顶煤液压支架与围岩耦合关系判定 ............................................................. 12 2.2 放顶煤工作面围岩耦合变化规律分析 ............................................................. 12 2.2.1 放顶煤工作面液压支架与围岩力学系统模型.......................................... 12 2.2.2 放顶煤工作面液压支架的工作状态.......................................................... 15 2.2.3 放顶煤工作面矿压显现的基本规律.......................................................... 15 2.3 两柱放顶煤液压支架智能耦合控制模型 ......................................................... 16 2.3.1 两柱放顶煤液压支架放煤耦合姿态分析.................................................. 16 2.3.2 两柱放顶煤液压支架围岩智能耦合监测模型建立.................................. 19 2.4 两柱放顶煤液压支架姿态调整算法 ................................................................. 21 2.5 本章小结 ............................................................................................................. 27 3 3 综采放顶煤工艺优化研究综采放顶煤工艺优化研究 ............................................................................................ 28 3.1 放矿学基础理论 ................................................................................................. 28 3.1.1 随机介质放矿理论在放顶煤中适用性...................................................... 28 万方数据 煤炭科学研究总院博士学位论文 2 3.1.2 椭球体理论的研究现状............................................................................... 29 3.2 基于随机散体介质流理论在放顶煤工艺过程中的研究应用 ......................... 30 3.2.1 综采放顶煤顶煤放出过程分析.................................................................. 31 3.2.2 基于散体介质流理论放出煤量计算.......................................................... 33 3.3 放顶煤组合工艺研究 ......................................................................................... 34 3.3.1 放煤工艺及其组合方式.............................................................................. 34 3.3.2 放煤步距和采放比对其组合方式影响...................................................... 35 3.4 基于散体介质流理论放顶煤过程数值模拟分析 .............................................. 36 3.4.1 基于散体介质流理论数值模拟可行性分析.............................................. 37 3.4.2 数值计算模型及模拟方案.......................................................................... 37 3.4.3 模拟结果及分析.......................................................................................... 38 3.5 基于散体介质流理论多窗口多轮放煤应用 ..................................................... 46 3.6 本章小结 ............................................................................................................. 49 4 4 自动化智能化放煤控制方法研究自动化智能化放煤控制方法研究 ................................................................................ 50 4.1 基于时序控制自动化放煤原理 ......................................................................... 50 4.2 基于分段多窗口多轮放煤工艺的时序控制自动化放煤逻辑关系与程序研 究 ................................................................................................................................. 52 4.2.1 时序控制自动化放煤逻辑关系................................................................... 52 4.2.2 时序控制自动化放煤程序编写................................................................... 55 4.3 放煤时间智能控制方法研究 ............................................................................. 58 4.3.1 基于随机介质放矿理论的放顶煤时间方程描述...................................... 58 4.3.2 放煤口对散体移动概率影响的数学描述.................................................. 61 4.4 智能放煤时间的果蝇神经网络混合预测与控制 ............................................. 64 4.4.1 放顶煤沉陷状态过程的方程描述............................................................... 64 4.4.2 影响放煤过程的因素分析.......................................................................... 65 4.4.3 果蝇优化算法与 RBF 混合算子的放煤时间预测...................................... 66 4.5 基于尾梁振动信号采集的煤矸识别智能放煤方法 ......................................... 72 4.5.1 基于放顶煤液压支架尾梁冲击振动信号的数学建模.............................. 72 4.5.2 放煤过程监测传感器选型.......................................................................... 75 万方数据 煤炭科学研究总院博士学位论文 3 4.6 实验系统概述及传感器安装 ............................................................................. 76 4.7 煤矸识别数据信号采集 ..................................................................................... 78 4.7.1 煤矸识别算法设计...................................................................................... 78 4.7.2 信号前端及功率谱处理分析...................................................................... 78 4.7.2 时域能量算法设计...................................................................................... 81 4.8 煤矸识别处理器模型算法工业性试验 ............................................................. 81 4.8.1 煤矸差异的可辨识性.................................................................................. 81 4.8.2 煤矸放落过程的可控性.............................................................................. 81 4.9 本章小结 .............................................................................................................. 81 5 5 综放液压支架自适应控制系统研究综放液压支架自适应控制系统研究 ............................................................................ 83 5.1 综放液压支架自适应控制系统集成 ................................................................. 83 5.2 放顶煤液压支架支护质量综合监测保障系统 ................................................. 84 5.2.1 质量综合监测保障系统概述...................................................................... 84 5.2.2 监测保障系统功能特点.............................................................................. 85 5.3 液压支架姿态无线微功耗自供电实时监测功能 ............................................. 88 5.3.1 姿态监测功能概述...............................................................