液压支架姿态监测关键技术研究.pdf
硕士学位论文 液压支架姿态监测关键技术研究 Research on Key Technologies of Posture Monitoring for Hydraulic Support 作 者徐西华 导 师王忠宾 教授 中国矿业大学 二○一七年四月 万方数据 中图分类号 TD355 学校代码 10290 UDC 621 密 级 公开 中国矿业大学 硕士学位论文 液压支架姿态监测关键技术研究 Research on Key Technologies of Posture Monitoring for Hydraulic Support 作 者 徐西华 导 师 王忠宾教授 申请学位 工学硕士 培养单位 机电工程学院 学科专业 机械制造及其自动化 研究方向 煤矿机电装备自动化 答辩委员会主席 韩正铜 评 阅 人 二○一七年四月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 保密的学位论文在解密后适用本授权书。 作者签名 导师签名 年 月 日 年 月 日 万方数据 致谢致谢 时光荏苒,转眼间三年的硕士研究生学习生活即将画上一个圆满的句号。蓦 然回首,感慨万千。非常有幸能够进入中国矿业大学这所百年学府,聆听老师们 的教诲,结识新的朋友。此时此刻,我的心中充满无限感激。 首先感谢我的导师王忠宾教授,本论文是在王忠宾教授的悉心指导下完成 的。三年来,导师敏锐的思维、严谨的治学态度、渊博的学识、诚挚谦虚的品格 和宽厚善良的处世方式,永远值得我学习和效仿。导师在我的学业上尤其是在论 文的撰写过程中,倾注了大量的心血,给予了我许多教诲和指导,将使我终生受 益。三年来,导师还在生活方面给予了我诸多慈父般的关怀和爱护,使我在感激 之余常常感到心有不安。我将更加努力,不辜负恩师的期望。 感谢课题组谭超老师、 刘新华老师、 周晓谋老师、 韩振铎老师、 闫海峰老师、 姚新港老师、黄嘉兴老师、杨寅威老师等老师在课题研究和科研实践中给予的热 忱鼓励和悉心指导。在论文撰写过程中,徐州金枫液压技术开发有限公司的厉军 总经理提供了很多无私帮助,丰富的现场经验帮助我攻坚克难。在此,谨向各位 前辈致以衷心的感谢。 感谢司垒、张霖、许静、刘泽、汪佳彪、徐荣鑫、高鹏等博士、硕士研究生 在论文撰写期间提供的大力支持和无私帮助,在此致以最真挚的谢意。 感谢关爱我的家人,在我求学期间给予我始终如一的鼓励、关怀和支持,一 直以来都是我前进的动力。 感谢我的女朋友朱潇君女士对我攻读硕士学位的理解和支持, 并能和我一起 分享学习生活中的喜怒忧乐。在我遇到困难的时候,她给予了我战胜困难的信心 和力量,使我得以顺利完成了学业。 感谢我生活学习了七年的母校中国矿业大学, 母校给了我一个宽阔的学 习平台,让我不断吸取新知,充实自己。 最后,感谢各位专家和学者在百忙之中审阅我的论文,并给予宝贵的指导, 谨在此表示深深的谢意。 万方数据 I 摘摘 要要 随着煤炭工业由劳动密集型向技术密集型转变, 综采工作面智能化开采成为 煤炭生产的发展方向。 液压支架作为煤矿综采工作面的关键机电装备之一,是保 证煤矿安全生产的重要支护设备。随着电液控制液压支架的广泛应用,降低了工 人劳动强度,提高了生产安全性。但当前液压支架电液控制系统的姿态监测功能 不足,不能满足液压支架智能控制需求,液压支架姿态监测技术亟待完善。 本文以掩护式液压支架为研究对象,建立了液压支架关键姿态参数测量模 型, 研究了液压支架关键姿态参数多传感融合求解方法,设计了液压支架姿态监 测系统,实现了液压支架姿态的监测。论文的主要研究内容如下 (1)设计了液压支架姿态监测系统总体架构。在分析液压支架总体结构及 姿态调节原理的基础上,得到了液压支架姿态参数监测要求, 建立了基于惯性测 量单元和倾角传感器的液压支架关键姿态参数测量模型, 设计了液压支架姿态监 测系统的总体架构。 (2)研究了液压支架顶梁与底座俯仰角度的多传感融合求解。研究了基于 卡尔曼滤波和加权中值滤波算法的液压支架姿态传感数据处理方法, 提高了传感 数据信噪比,并设计了一种改进加权融合算法, 实现了液压支架顶梁与底座俯仰 角度的求解。 (3)研究了液压支架支护高度的多传感融合求解。建立了基于惯性测量单 元和倾角传感器的液压支架支护高度求解模型,设计了基于 BP 神经网络的多传 感融合算法,实现了液压支架支护高度的求解。 (4)设计了液压支架姿态监测系统。设计了液压支架姿态监测系统整体框 架,完成了监测系统硬件和软件的设计,并对监测系统进行了调试,完成了液压 支架姿态监测系统的设计。 (5)搭建了液压支架姿态监测系统实验平台。完成了液压支架姿态地面和 顺槽远程监控软件的开发,开展了液压支架姿态监测实验, 验证了液压支架姿态 监测系统的可行性。实验结果表明液压支架支护高度监测平均误差为 0.02m, 顶梁俯仰角度监测平均误差为 0.34,底座俯仰角度监测平均误差为 0.18,满 足液压支架姿态监测的精度要求。 该论文有图 77 幅,表 15 个,参考文献 87 篇。 关键词关键词液压支架;姿态监测;多传感融合;监测系统 万方数据 III Abstract With the transition of coal industry from labor-intensive to technology-intensive, intelligent mining for fully mechanized coal mining working face is direction of coal production. As one of the key electromechanical equipment in fully mechanized coal mining working face, hydraulic support is an important supporting equipment assuring the safety production in coal mine. With the wide usage of electro-hydraulic control for hydraulic support, labour intensity of mining workers has been reduced, and security of coal production has been improved. The current electro-hydraulic control system of hydraulic support cannot satisfy the requirement of intellectual control for hydraulic support due to insufficient function of posture monitoring, thus, hydraulic support posture monitoring technology is urgent to be improved. This paper takes the two-prop shield powered hydraulic support as goals. Multi-sensor fusion solving and measurement model of hydraulic support key posture parameters has been researched, and posture monitoring system has been designed to realize posture monitoring. The contents of this paper are listed as follows 1 Overall architecture of hydraulic support posture monitoring system was designed. By analyzing the overall structure and posture adjustment principle of hydraulic support, the posture monitoring parameter demand and the overall structure of hydraulic support posture monitoring system were proposed with establishing key posture parameters measurement models based on inertial measurement unit and inclinometer. 2 The canopy and base elevation angle solving of hydraulic support was researched based on multi-sensor fusion. Kalman filter and weighted median filter were researched to increase the signal-to-noise ratio of hydraulic support posture sensor data. An improved weighted fusion algorithm was designed to solve the canopy and base elevation angle of hydraulic support. 3 The supporting height solving of hydraulic support was researched based on multi-sensor fusion. Supporting height solving model of hydraulic support was established based on inertial measurement unit and inclinometer. A multi-sensor fusion algorithm based on BP neural network was designed to solve the Supporting height of hydraulic support. 4 Posture monitoring system of hydraulic support was designed. Overall 万方数据 IV framework of hydraulic support posture monitoring system was designed. Hardware and software design of monitoring system have been accomplished. The design of posture monitoring system for hydraulic support was accomplished depend on the system debugging. 5 The posture monitoring system experimental plat of hydraulic support was established. The ground and groove posture remote monitoring software of hydraulic support were developed, and the posture monitoring experiment has been carried out to verify its feasibility. The results showed that the hydraulic support posture monitoring average error of supporting height, canopy elevation angle and base elevation angle were 0.02m, 0.34 and 0.18 respectively. The results of hydraulic support posture monitoring satisfied accuracy requirement. There are 77 figures, 15 tables and 87 references in this paper. Keywords hydraulic support; posture monitoring; multi-sensor fusion; monitoring system 万方数据 V 目目 录录 摘要摘要 ................................................................................................................................... I 目录目录 ................................................................................................................................. V 图清单图清单 ............................................................................................................................ IX 表清单表清单 ......................................................................................................................... XIII 变量注释表变量注释表 ................................................................................................................. XIV 1 绪论绪论 .............................................................................................................................. 1 1.1 课题来源及背景 ....................................................................................................... 1 1.2 课题研究现状及存在问题 ....................................................................................... 2 1.3 课题研究存在的问题和意义 ................................................................................... 4 1.4 课题研究内容与方法 ............................................................................................... 5 1.5 论文结构 ................................................................................................................... 7 2 液压支架姿态监测系统总体设计液压支架姿态监测系统总体设计 ............................................................................. 8 2.1 液压支架工作原理及姿态概述 ............................................................................... 8 2.2 液压支架姿态监测系统总体框架结构 ................................................................. 12 2.3 液压支架姿态测量模型 ......................................................................................... 16 2.4 液压支架姿态参数求解方案 ................................................................................. 19 2.5 本章小结 ................................................................................................................. 20 3 液压支架顶梁与底座俯仰角度多传感融合求解方法研究液压支架顶梁与底座俯仰角度多传感融合求解方法研究 ................................... 21 3.1 液压支架顶梁和底座俯仰角度多传感融合求解方案 ......................................... 21 3.2 液压支架顶梁和底座俯仰角度求解 ..................................................................... 22 3.3 惯性测量单元卡尔曼滤波 ..................................................................................... 26 3.4 倾角传感器加权中值滤波 ..................................................................................... 31 3.5 基于改进加权融合算法的液压支架顶梁与底座俯仰角度多传感融合求解 ..... 34 3.6 本章小结 ................................................................................................................. 41 4 液压支架支护高度多传感融合求解方法研究液压支架支护高度多传感融合求解方法研究 ....................................................... 42 4.1 液压支架支护高度多传感融合求解方案 ............................................................. 42 4.2 液压支架支护高度求解模型 ................................................................................. 43 4.3 基于 BP 神经网络的液压支架支护高度多传感融合求解 ................................... 48 万方数据 VI 4.4 本章小结 ................................................................................................................. 55 5 液压支架姿态监测系统设计液压支架姿态监测系统设计.................................................................................... 56 5.1 液压支架姿态监测系统总体结构设计 ................................................................. 56 5.2 液压支架姿态监测系统硬件设计 ......................................................................... 57 5.3 液压支架姿态监测系统软件设计 ......................................................................... 64 5.4 模块通信接口调试 ................................................................................................. 69 5.5 本章小结 ................................................................................................................. 70 6 实验研究实验研究 .................................................................................................................... 71 6.1 实验平台总体架构 ................................................................................................. 71 6.2 工作面现场液压支架姿态监测设备安装布置 ..................................................... 73 6.3 虚拟液压支架模型与顺槽液压支架姿态监测界面 ............................................. 75 6.4 地面液压支架姿态监测上位机与数据存储设计 ................................................. 78 6.5 液压支架姿态监测实验方案及结果分析 ............................................................. 81 6.6 本章小结 ................................................................................................................. 88 7 总结与展望总结与展望 ................................................................................................................ 89 7.1 总结 ......................................................................................................................... 89 7.2 展望 ......................................................................................................................... 90 参考文献参考文献 ........................................................................................................................ 91 作者简历作者简历 ........................................................................................................................ 97 学位论文原创性声明学位论文原创性声明 .................................................................................................... 99 学位论文数据集学位论文数据集 .......................................................................................................... 101 万方数据 VII Contents Abstract .......................................................................................................................... III Contents ....................................................................................................................... VII List of Figures ................................................................................................................ IX List of Tables .............................................................................................................. XIII List of Variables ......................................................................................................... XIV 1 Introduction ................................................................................................................ 1 1.1 Origin and Background .............................................................................................. 1 1.2 Research Status and Problems ................................................................................... 2 1.3 Project Problems and Research Significance ............................................................. 4 1.4 Research Contents and s ................................................................................ 5 1.5 Structure of Thesis ..................................................................................................... 7 2 Overall Design of Hydraulic Support Posture Monitoring System ....................... 8 2.1 Posture and Working Principle Introduction of Hydraulic Support .......................... 8 2.2 Overall Frame Structure of Hydraulic Support Posture Monitoring System ........... 12 2.3 Posture Measurement Model of Hydraulic Support ................................................ 16 2.4 Solving Scheme of Posture Parameters for Hydraulic Support ............................... 19 2.5 Summary .................................................................................................................. 20 3 Multi-Sensor Fusion Solving Research of Hydraulic Support Canopy and Base Elevation Angle ........................................................................................ 21 3.1 Multi-Sensor Fusion Solving Scheme of Hydraulic Support Canopy and Base Elevation Angle ....................................................................................................... 21 3.2 Hydraulic Support Canopy and Base Elevation Angle Solving .............................. 22 3.3 Kalman Filtering of Inertial Measurement Unit ...................................................... 26 3.4 Weighted Median Filtering of Inclinometer ............................................................ 31 3.5 Multi-Sensor Fusion Solving of Hydraulic Support Canopy and Base Elevation Angle Based on Improved Weighted Average Data Fusing .................................... 34 3.6 Summary .................................................................................................................. 41 4 Multi-Sensor Fusion Solving Research of Hydraulic Support Supporting Height .................................................................................................... 42 万方数据 VIII 4.1 Multi-Sensor Fusion Solving Scheme of Hydraulic Support Supporting Height .... 42 4.2 Hydraulic Support Supporting Height Solving Model ............................................ 43 4.3 Multi-Sensor Fusion Solving of Hydraulic Support Supporting Height Based on BP Neural Netw