巷道喷浆机械手轨迹规划与自动控制研究.pdf
硕士学位论文 巷道喷浆机械手轨迹规划与自动控制研究 Research on Trajectory Planning and Automatic Control of Roadway Grouting Manipulator 作 者徐海乔 导 师刘送永教授 中国矿业大学 二〇一九年五月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD421.6 学校代码 10290 UDC 621 密 级 公开 中国矿业大学 硕士学位论文 巷道喷浆机械手轨迹规划与自动控制研究 Research on Trajectory Planning and Automatic Control of Roadway Grouting Manipulator 作 者 徐海乔 导 师 刘送永 申请学位 工学硕士 培养单位 机电工程学院 学科专业 机械电子工程 研究方向 矿山机械 答辩委员会主席 陈国安 评 阅 人 盲审 二○一九年五月 万方数据 致谢致谢 时光荏苒,如白驹过隙,回首中国矿业大学三年硕士研究生生涯无限感慨, 在这三年里有酸甜苦辣。在这三年硕士研究生生涯中我遇到了很多良师益友,他 们有的是我人生路上的引导者,有的是我人生路上一段旅途的同行人,在这里我 衷心地对三年里遇到的良师益友说一声谢谢。 首先我要真诚的感谢我的导师刘送永教授。导师为人谦和,平易近人,他优 秀的做人品质、严谨的治学态度和开拓创新的精神将激励和影响我的一生。从论 文选题、研究内容和实验方法的确定到论文撰写、修改和定稿,始终得到了导师 的悉心指导和帮助,凝结了导师的心血和智慧。在学习过程中,导师总以精益求 精的态度和一丝不苟的作风要求我,对我精心点拨、指点迷津,帮助我解决了诸 多疑惑和问题,同时,在生活中,导师给予我无微不至的关怀和帮助。在此,谨 向我的导师刘送永教授致以崇高的敬意和衷心的感谢 感谢课题组张永忠教授在学术研究过程中给予的帮助与支持, 感谢他们在我 学术上遇到疑惑时给予的热情解答。 其次, 感谢中国矿业大学姬会福博士、 纪云博士、 李洪盛博士、 崔玉明博士、 张德义博士、谢奇志博士、周方跃博士、韩玉辉硕士、王博文硕士、扈阳硕士、 郝志超硕士、丛文强硕士、马浩硕士、黄举硕士、陈松硕士等在课题研究过程中 给予的帮助。 感谢王浩东硕士、周达硕士、贾新庆硕士在课题试验过程中给予的帮助。 感谢江苏中机矿山设备有限公司在试验过程中给予的帮助。 感谢远在家乡的父母的养育之恩和自始至终默默无闻的付出, 你们永远是我 最坚强的后盾。感谢亲朋好友的奉献和支持,你们无微不至的关怀,是我迷茫困 惑时的灯塔,让我积极乐观,勇敢无畏。 最后,感谢各位专家在百忙之中审阅我的论文,并提出宝贵的指导意见和建 议。在此,谨向各位专家表示衷心的谢意。 万方数据 I 摘摘 要要 喷浆机作为一种广泛应用于铁路公路、地下建筑、各类矿山和水利水电隧道 或巷道工程施工的设备,在国民经济建设中具有广阔的市场前景。目前巷道支护 技术研究的重点是机械化和智能化, 但多数煤矿在巷道支护过程中均采用人工喷 浆或人工操作喷浆机械手,机械手在工作过程中冲击抖动大,不利于喷浆质量和 机械手寿命,虽然对喷浆支护技术的研究取得一定成果,但并未对喷浆机械手的 关节冲击和自动喷浆控制形成系统性的解决方案。基于此,本文对机械手运动进 行了冲击最优轨迹规划研究和喷浆自动控制研究。 以喷浆机械手最优喷浆工艺为基础,进行喷浆机械手结构设计,并利用 ANSYS Workbench 进行机械手静力学分析和模态分析,验证所设计结构的合理 性。利用标准 D-H 法对其进行连杆坐标系的建立和正逆运动学分析,获取末端 执行器位姿与机械手各关节变量之间的关系, 为后续机械手的轨迹规划和自动控 制提供理论依据。 基于喷浆机械手最佳喷浆路径, 提出利用高阶多项式过渡的线性插值法进行 水平喷浆轨迹的冲击最优轨迹规划和五次 B 样条的轨迹规划方法对竖直喷浆轨 迹进行冲击最优轨迹规划,并通过理论分析得到规划后的轨迹函数表达式,利用 MATLAB 对所得到的机械手位移、速度、加速度和脉动分别进行仿真,仿真结 果表明经轨迹规划后喷浆机械手的位移、速度、加速度和脉动均连续,证明了所 采用的轨迹规划方法的合理性和有效性。 基于轨迹规划后冲击最优的机械手运动轨迹, 设计机械手电液比例位置控制 系统,建立了阀控非对称液压缸、比例方向阀、比例放大器和位移传感器的数学 模型,得到系统的传递函数并进行频谱分析,系统的响应时间为 5.5s,进而通过 加入 PID 控制器对系统进行校正,并采用试凑法调节 PID 参数,校正后系统响 应时间为 0.18s。利用 MATLAB/Simulink 建立机械手轨迹仿真模型,对规划后的 轨迹进行 PID 仿真,得到水平轨迹的最大误差为 10mm,竖直轨迹的最大误差为 2.1mm,可以保证喷浆机械手冲击最优轨迹的准确实现,验证了规划轨迹的合理 性。 基于喷浆机械手的喷浆工艺, 设计喷浆机械手 PLC 控制系统, 并以巷道喷浆 过程中机械手运动学逆解作为系统输入,进行喷浆机械手自动控制实验,通过机 械手喷浆轨迹验证了计算所得运动学逆解的准确性, 并将传感器获取的机械手关 节变化量与逆解进行分析对比,得到各关节最大误差分别为3.4、5.8、0.3、 0.4、0mm、0.2,验证了所设计 PLC 控制系统的合理性和稳定性。 该论文有图 83 幅,表 14 个,参考文献 95 篇。 万方数据 II 关键词关键词喷浆机械手;运动学分析;轨迹规划;PID 控制;自动控制 万方数据 III Abstract As a kind of equipment widely used in construction of railway, highway, underground buildings, mines, water conservancy, hydropower tunnels or roadways, grouting machine has broad market prospects in national economic construction. At present, the emphasis of research on roadway support technology is mechanization and intellectualization, but most coal mines adopt manual shotcreting or manual shotcreting manipulator in the process of roadway support. The impact of the manipulator in the working process is tremendous, which is not conducive to the quality of shotcreting and the life of the manipulator. Although some achievements have been made in the research of shotcreting support technology, it has not impacted the joints of the shotcreting manipulator Automatic grouting control s a systematic solution. Based on this, this paper studies the optimal trajectory planning and automatic control of shotcreting for manipulator motion. Based on the optimum grouting technology of the shotcrete manipulator, the structure design of the shotcrete manipulator is carried out, and the static and modal analysis of the manipulator is carried out by ANSYS Workbench to verify the rationality of the designed structure. The standard D-H is used to establish the linkage coordinate system and analyze the forward and inverse kinematics. The relationship between the position and posture of the end-effector and the joint variables of the manipulator is obtained, which provides a theoretical basis for the subsequent trajectory planning and automatic control of the manipulator. Based on the optimal shotcrete path of the shotcrete manipulator, the linear interpolation of high order polynomial transition is used to plan the optimal trajectory of horizontal shotcrete trajectory and the trajectory planning of quintic B-spline is used to plan the optimal trajectory of vertical shotcrete trajectory. The trajectory function expression of the planned trajectory is obtained through theoretical analysis. The displacement and velocity of the manipulator are obtained by using MATLAB. The simulation results show that the displacement, velocity, acceleration and pulsation of the grouting manipulator are continuous after trajectory planning, which proves the rationality and effectiveness of the trajectory planning . Based on the optimal trajectory of the manipulator after trajectory planning, the electro-hydraulic proportional position control system of the manipulator is designed. 万方数据 IV The mathematical models of the valve-controlled asymmetric hydraulic cylinder, proportional directional valve, proportional amplifier and displacement sensor are established. The transfer function of the system is obtained and the frequency spectrum is analyzed. The response time of the system is 5.5s. Then the system is corrected by adding a PID controller. The PID parameters are adjusted by trial and error , and the system response time is 0.18s after correction. The trajectory simulation model of the manipulator is established by using MATLAB/Simulink. The maximum error of the planned trajectory is 10 mm for horizontal trajectory and 2.1 mm for vertical trajectory. It can ensure the accurate realization of the optimal trajectory of the shotcrete manipulator and verify the rationality of the planned trajectory. Based on the grouting technology of the shotcrete manipulator, the PLC control system of the shotcrete manipulator is designed. The automatic control experiment of the shotcrete manipulator is carried out by taking the inverse kinematics solution of the manipulator as the of the system. The accuracy of the inverse kinematics solution is verified by the grouting trajectory of the manipulator, and the change of the manipulator joint obtained by the sensor is compared with the inverse kinematics solution. The maximum errors of each joint are 3.4 degree, 5.8 degree, 0.3 degree, 0.4 degree, 0 mm and 0.2 degree respectively, which verifies the rationality and stability of the designed PLC control system. In this dissertation, there are 83 figures, 14 tables and 95 references. Keywords Shotcrete manipulator; Kinematics analysis; Trajectory planning; PID control; Automatic control 万方数据 V 目目 录录 摘摘 要要............................................................................................................................ I 目目 录录........................................................................................................................... V 图清单图清单......................................................................................................................... IX 表清单表清单.......................................................................................................................XIV 变量注释表变量注释表 ............................................................................................................... XV 1 绪论绪论............................................................................................................................ 1 1.1 选题背景及研究意义 ............................................................................................. 1 1.2 喷浆技术及机械手轨迹规划概述 ......................................................................... 3 1.3 国内外研究现状及存在问题 ................................................................................. 8 1.4 主要研究内容 ........................................................................................................ 15 1.5 本章小结 ............................................................................................................... 16 2 喷浆机械手设计喷浆机械手设计 ..................................................................................................... 17 2.1 喷浆机械手最佳喷浆工艺 ................................................................................... 17 2.2 喷浆机械手结构设计 ........................................................................................... 18 2.3 机械手喷浆工作原理 ............................................................................................ 19 2.4 喷浆机械手关键零部件静力学分析 .................................................................... 20 2.5 喷浆机械手模态分析 ............................................................................................ 27 2.6 本章小结 ................................................................................................................ 31 3 喷浆机械手运动学分析喷浆机械手运动学分析 ......................................................................................... 33 3.1 机械手位姿描述 .................................................................................................... 33 3.2 喷浆机械手连杆坐标系建立 ............................................................................... 34 3.3 喷浆机械手正运动学分析 ................................................................................... 39 3.4 喷浆机械手逆运动学分析 ................................................................................... 41 3.5 本章小结 ............................................................................................................... 47 4 喷浆机械手运动轨迹规划研究喷浆机械手运动轨迹规划研究 ............................................................................. 49 4.1 喷浆机械手运动规划 ........................................................................................... 49 4.2 喷头位姿 ............................................................................................................... 50 4.3 机械手水平轨迹规划研究 ................................................................................... 51 4.4 机械手竖直轨迹规划研究 ................................................................................... 58 万方数据 VI 4.5 本章小结 ................................................................................................................ 68 5 喷浆机械手自动控制系统研究喷浆机械手自动控制系统研究 ............................................................................. 69 5.1 喷浆机械手动作分析 ............................................................................................ 69 5.2 PLC 控制系统方案设计 ....................................................................................... 70 5.3 喷浆机械手 PLC 控制系统设计 .......................................................................... 71 5.4 电液比例位置控制系统设计 ................................................................................ 76 5.5 PID 控制系统设计 ................................................................................................ 81 5.6 喷浆机械手 PID 控制仿真 ................................................................................... 84 5.7 本章小结 ................................................................................................................ 88 6 喷浆机械手自动控制实验研究喷浆机械手自动控制实验研究 ............................................................................. 89 6.1 实验目的 ................................................................................................................ 89 6.2 实验方案设计 ........................................................................................................ 89 6.3 实验结果分析 ........................................................................................................ 94 6.4 本章小结 ................................................................................................................ 97 7 结论与展望结论与展望 .............................................................................................................. 99 7.1 结论 ........................................................................................................................ 99 7.2 创新点 .................................................................................................................. 100 7.3 展望 ...................................................................................................................... 100 参考文献参考文献 ................................................................................................................... 101 附录附录............................................................................................................................ 106 作者简历作者简历 ................................................................................................................... 107 学位学位论文原创性声明论文原创性声明 ............................................................................................... 108 学位论文数据集学位论文数据集 ....................................................................................................... 109 万方数据 VII Contents Abstract ...................................................................................................................... III Contents .................................................................................................................... VII List of Figures ............................................................................................................ IX List of Tables ............................................................................................................XIV List of Variables ........................................................................................................ XV 1 Introduction ............................................................................................................... 1 1.1 Background and Significance of the Research ........................................................ 1 1.2 Overview of Grouting Technology and Robot Trajectory Planning ........................ 3 1.3 Research Status and Problems at Home and Abroad ............................................... 8 1.4 Main Research Contents ........................................................................................ 15 1.5 Summary ................................................................................................................ 16 2 Shotcrete Manipulator Design ............................................................................... 17 2.1 Optimum Grouting Technology of Grouting Manipulator .................................... 17 2.2 Structure Design of Shotcrete Manipulator ........................................................... 1