断层型冲击矿压的动静载叠加诱发原理及其监测预警研究.pdf
国家重点基础研究发展规划(973)资助项目(2010CB226805) 国家自然基金和神华集团有限公司联合资助项目(51174285) 国家自然科学基金青年科学基金项目(51204165,51404243,51404269) 江苏高校优势学科建设工程资助项目(SZBF2011-6-B35) 江苏省普通高校研究生培养创新工程资助项目(CXLX13-949) 中央高校基本科研业务费专项资金资助(2013DXS03) 博士学位论文 断层型冲击矿压的动静载叠加诱发原理 及其监测预警研究 Fault Rockburst Induced by Static and Dynamic Loads Superposition and its Monitoring and Warning 作 者蔡 武 导 师窦林名 教授 中国矿业大学 二○一五年五月 中图分类号 TD324 学校代码 10290 UDC 622 密 级 公开 中国矿业大学 博士学位论文 断层型冲击矿压的动静载叠加诱发原理 及其监测预警研究 Fault Rockburst Induced by Static and Dynamic Loads Superposition and its Monitoring and Warning 作 者 蔡 武 导 师 窦林名 申请学位 工学博士 培养单位 矿业工程学院 学科专业 采矿工程 研究方向 矿山压力 答辩委员会主席 柏建彪 评 阅 人 二○一五年五月 学位论文使用授权声明学位论文使用授权声明 Certificate of Thesis Authority 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰写的学 位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一,学位论文著作权拥有者须授权所在学校拥有学位论文的 部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电子版,可以使 用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和科研目的,学校档案 馆和图书馆可以将公开的学位论文作为资料在档案馆、图书馆等场所或在校园网上供校 内师生阅读、浏览。另外,根据有关法规,同意中国国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 论文审阅认定书 论文审阅认定书 Thesis Approval Identification 研究生 蔡武 在规定的学习年限内,按照研究生培养方案的要求, 完成 了研究生课程的学习,成绩合格;在我的指导下完成本学位论文,经审阅, 论文中的观点、数据、表述和结构为我所认同,论文撰写格式符合学校的相 关规定,同意将本论文作为学位申请论文送专家评审。 导师签字 年 月 日 致 谢 致 谢 寒来暑往, 春秋几度, 自从2010年上半年由窦林名教授指导完成本科毕业设计以来, 转眼间师从窦林名教授已五载有余, 收获颇丰, 感触亦深。 窦林名教授渊博的知识积累、 开阔的学术视野、 严谨的治学态度、 优秀的做人品质和认真的工作态度深深地影响了我, 这将是我一生为之奋斗的榜样。导师从一开始对我高标准的严格要求,让我的博士研究 生学术生涯充满压力和竞争的同时也收获满满,这也是我一生当中最为宝贵的经历和财 富。本论文能够顺利的完成倾注了导师大量的心血和汗水,从论文选题、构思、实验室 试验、理论分析、现场实践、撰写、修改到最后定稿的整个过程都得到了导师悉心的指 导与鼓励。师恩如父,谨向我的恩师致以最崇高的敬意和最诚挚的感谢,也要感谢导师 及师母在生活、做人、做事上给予的启示和帮助。 论文的顺利完成同时还离不开课题组的老师及师兄弟们的鼎力帮助。感谢刘海顺教 授、牟宗龙教授、陆菜平教授、曹安业副教授、巩思园副研究员、贺虎副教授、徐秀副 教授、何江讲师、范军老师在我博士阶段的交流和指导,以及在学术论文写作中提出的 宝贵建议和帮助,令我受益匪浅。感谢师弟李振雷博士、朱广安博士、苏振国硕士、刘 阳硕士、王有勇硕士、井广成硕士、李腾硕士、王天柱硕士、王正义硕士、郅胜硕士、 姚肖肖硕士在力学理论分析、数值模拟、资料整理、数据分析与处理过程中给予的大力 帮助。感谢丁言露博士、张智勇硕士、陈建君硕士、王志康硕士、卢昊硕士、刘赛硕士、 徐锋硕士在物理力学试验中夜以继日的不辞辛苦。感谢孔勇博士、王盛川硕士、毛永硕 士、沈威硕士、李慧硕士、李静硕士、孙尚鹏硕士、王常彬硕士在相似材料模拟试验中 的全力以赴。另外,还要感谢已毕业的刘彪硕士在数值模拟上提供的帮助,以及朱劼硕 士在震动波速度反演处理上付出的辛勤劳动。五年的研究生生活弥足珍贵,此生难忘, 在此向你们表示由衷的感谢。 感谢中国矿业大学屠世浩教授、刘长友教授、曹胜根教授、牟宗龙教授和太原理工 大学康立勋教授在论文选题中给予的指导和建议 感谢煤炭资源与安全开采国家重点实验室王桂峰博士后、张少华老师、赵海云老师 和宋万新老师在实验中的帮助。 感谢深部岩土力学与地下工程国家重点实验室李元海教授在数字照相量测技术方面 给予的大力帮助,使得论文中的断层物理力学试验得以顺利完成。 感谢国际审稿人 Richard J. Lisle 教授、Joao Hippertt 教授、Navid Hosseini 教授、 Alessandra Di Domenica 博士、Sara Satolli 博士及其他匿名审稿人,以及英国帝国理工学 院司光耀博士、澳大利亚卧龙岗大学乔秋秋博士和李许伟博士等在我学术论文发表过程 中给出的大量建设性意见,这些建议和意见不仅保证了我的学术论文在国际期刊上顺利 发表,本论文中的大量创新性工作也都启发于此。 感谢母校九年来对我的培养。感谢矿业工程学院、煤炭资源与安全开采国家重点实 验室、采矿系的各位老师、领导对我博士阶段学习和科研工作上的大力支持和关心,更 感谢你们对我的就业和生活等多个方面的指导。 感谢河南大有能源股份有限公司矿压研究所、跃进煤矿、常村煤矿、杨村煤矿、千秋 煤矿、甘肃靖远煤电股份有限公司宝积山煤矿和黑龙江龙煤集团的领导、防冲科室技术 人员及现场施工、监测人员,感谢你们多年来给予我的诸多帮助和指导。 感谢中国矿业大学科学研究所所长谷德忠老师及其夫人孟玲阿姨让我在求学他乡的 徐州感受到了一份家的温馨,感谢你们不仅在生活、家庭、个人等方面给我的关照和悉 心指导,还引导我以优异的成绩完成了本科学业并走入研究生科研学术行列。 特别感谢我的父母和兄长,是你们在我二十年来寒窗求学生涯中,无时无刻地牵挂 着我的学习与生活,不仅为我提供可靠的物质基础,让我得以安心学习;更是给了我无 私奉献的支持与鼓励,让我在挫折与失败中能够重新获得力量。在外求学已九载,不能 时常陪在你们身边,是我莫大的遗憾。祝愿你们能够健康平安、幸福快乐、直到永远。 特别感谢袁莎莎,与你相遇,是上天赐予的美丽。没有你的督促、帮助、体谅、包容 和支持,我的博士生活将是很不一样的光景。记得在我科研和学习上开始松懈和懒散的 时候,是你对我的当头棒喝,让我瞬间进入一级战斗状态;在我伤心和困惑的时候,是 你第一时间为我排忧解惑,让我重新振作;在我学术论文发表最为艰难的时候,是你为 我摆脱一切干扰,不惜牺牲自己的国庆长假,督促我静心完成学术论文;在我科研任务 比较紧急的时候,是你主动为我分担一些个人琐事,让我拥有充足的时间来完成任务; 在我博士论文撰写最为艰辛的时候,是你在完成自己硕士论文的同时,牺牲晚上的休息 时间,为我调试程序,更是你在自己工作之余还不辞辛苦地帮我修改语言、格式和纠正 错别字。未来的每一步每一个脚印,让我们相守一生,走得更远。 感谢本论文中所有引用文献的作者。 感谢所有帮助、 关心和支持我的同学和朋友们, 你们的友谊是我今生最宝贵的财富 最后,感谢论文的评审和答辩专家,感谢你们在百忙之中评阅本论文,衷心希望得 到你们的指导和帮助 谨以此论文献给一直对我满怀期待的奶奶,愿您在世界的另一端一切安好 蔡 武 2015 年 4 月 3 日 于中国矿业大学矿业科学中心 B530-2 I 摘 要 摘 要 冲击矿压是煤矿煤岩动力灾害之一, 主要发生在煤柱高应力区、 坚硬顶板工作面、 断 层带附近和褶曲构造区,其中断层带附近的冲击矿压较为复杂和严重。论文综合采用理 论分析、数值仿真、物理力学试验、相似模拟试验、数值试验与工程实践等手段,对断 层冲击矿压的动静载叠加诱发原理、多尺度前兆信息识别、微震多参量时空监测预警、 及其监测与防治工程实践的理论与技术进行了系统研究。 试验、理论及数值仿真结果表明静载作用下的断层活化存在上行和下行解锁两种 形式,并与断层摩擦系数、倾角、围岩强度等特征参数以及侧压系数密切相关,纯静载 作用下的断层一般处于闭锁状态,且以断层围岩产生等效劈裂破坏为主;动载作用下的 断层容易在某一时刻产生超低摩擦效应,并且最小主应力方向的动载应力波扰动作用比 最大主应力方向更为显著,不仅更容易改变断层的受力状态及其活动进程进而引起断层 活化,而且还可触发比预期应力降更大的错动;断层区域顶板的承载能力大大减弱,且 工作面在上盘开采时的承载能力要强于下盘开采,同时顶板破断过程中产生的“反弹” 和“压缩”效应以及动载应力波对断层应力状态的改变产生影响;顶板砌体梁结构存在 时断层煤柱上极限应力可达7.93倍的顶板单轴抗压强度, 足够使煤柱瞬间发生失稳破坏。 研究提出了“一扰动,两载荷,三对象,四类型”的断层冲击矿压动静载叠加作用机 理,指出断层带附近的冲击矿压是煤矿采掘活动扰动引起,是由断层和顶板相互作用产 生的动载与煤柱静载两种载荷叠加诱发,是断层、顶板和煤柱相互作用的结果,具体存 在断层活化型、顶板破断失稳型、煤柱破坏型和耦合失稳型四种。 建立了非均质应变损伤软化本构模型,开展了非均质煤岩材料的声发射数值试验, 揭示出材料的非均质性是煤岩体破坏之前产生前兆的根源;分别从小尺度实验室标准煤 岩样和中尺度相似材料模型的声发射实验以及大尺度矿山开采的微震监测角度,辨识出 断层冲击矿压的前兆信息,进一步结合冲击矿压存在前兆信息的力学基础,揭示出微震 监测预警断层冲击矿压的可行性。 构建了“一中心,四变化,五指标”的微震多参量时空监测预警体系指导思想,指出 断层冲击矿压的微震多参量监测应以冲击矿压存在前兆的根源煤岩材料的非均质性为 中心,监测内因煤岩变形的局部化、外因煤岩体内地球物理场变化、损伤与能量释 放的周期变化和震源机制变化四种前兆信息,包括微震活动性多维信息、周围环境介质 特性信息、 变形能孕育过程信息、 非线性混沌分形信息和震源机制波形信息五类指标。 基于断层冲击矿压的动静载叠加诱发原理, 总结了断层冲击矿压的监测与防治思路, 具体针对河南义马跃进煤矿和甘肃宝积山煤矿特殊的地质与开采技术条件,开展了断层 冲击矿压的监测与防治工程实践,应用效果显著。 该论文有图 150 幅,表 14 个,参考文献 306 篇。 关键词关键词断层;冲击矿压;动静载叠加;微震;多参量;监测预警;多尺度 II Abstract Rockburst is one of the coal or rock dynamic disasters in coal mine. It mainly occurs in the area of high stress due to coal pillar, longwall panel with hard roof, fault zone, and fold structure region. Thereinto, the rockburst ouccurred in fault zone is more serious and complicated. In this dissertation, the static and dynamic loads superposition mechanism of fault rockburst and its multi-scale precursors identification, spatio-temporal monitoring and warning with microseismic multi-parameter, and engineering practice of prevention and monitoring were systematically studied using a combination research of theoretical analysis, numerical simulation, physical mechanics experiment, similarity simulation experiment, numerical test, and engineering practice. Experiment results, theoretical analysis, and numerical simulation indicated that there were two kinds of s for the fault activation with up unlocking and down unlocking under static load, and the fault unlocking was decided by fault friction coefficient, fault dip angle, fault surrounding rock strength, and the ratio between horizontal stress and vertical stress. In-situ observations show that fault generally maintained the locked state under the pure static load, and in this context the equivalent cleavage failures were mainly occurred in the fault surrounding rocks. The effect of anomalously low friction on fault plane was easy to occur when dynamic load was applied, and the disturbance effect of dynamic load in the minimum principal stress direction was more significant than that of the maximum principal stress. It was easier to trigger fault activation through changing the stress state of the fault and its active process, and could further trigger greater stress drop than expected. The load-carrying ability of the roof was greatly weakened due to the existence of fault, and this ability as the longwall panel advances in the hanging wall of fault was better than that of the footwall. Moreover, the rebound and compression effects and the dynamic load generated in the process of roof deation and fracture could also influence the stress state of fault. Furthermore, the ultimate stress on the coal pillar could reach approximately 7.93 times of roof’s uniaxial compressive strength as a voussoir beam structure of roof is present. Under such high stress, the coal pillar is normally failed. The mechanism of static and dynamic loads superposition called “one disturbance, two loads, three objects, and four types” was proposed for the fault rockburst. The mechanism indicated that fault rockburst is caused by the mining disturbance, induced by the superposition of static and dynamic loads, resulted from the interactions between fault, roof, and coal pillar. It could be classified into four types fault activation triggering, roof fracture and unstability triggering, coal pillar failure triggering, and coupled failures triggering including abovementioned three types. III The constitutive model of heterogeneity and strain damage was built, and numerical tests of acoustic emission were conducted for coal or rock with different homogeneous degrees. It revealed that the heterogeneity of rock is the root for the precursors existing before rock fracturing. Subsequently, the fault rockburst precursors were identified from the multi-scale viewpoint of small-scale standard rock samples, meso-scale similar material models, and large- scale mining. Further combining the fundamental mechanical mechanism for the existence of fault rockburst precursors, microseismic monitoring system can be proved to be feasible for the monitoring and warning of fault rockburst. Guiding ideology called “one center, four variations, and five inds” was constructed for the spatio-temporal monitoring and warning system of microseismic multi-parameter for fault rockburst, which indicated that the system should consider that the heterogeneity of coal or rock materials is the root for the existence of fault rockburst precursors as the center. It should monitor the variations of internal cause that coal or rock deation localization, the variations of external cause that geophysical field in the coal or rock, the periodic variations of damage process and energy release, and the variations of focal mechanism parameters. As a consequence, it includes five index-types multi-dimensional ination of microseismicity, media ination in the surrounding environment, preparation process ination of the strain energy, nonlinear chaos and fractal ination, and seismic wave ination of the focal mechanism parameters. Based on the theory of fault rockburst induced by static and dynamic loads superposition, s were summarized for the prevention and monitoring of fault rockburst. Further considering the specific conditions of geology and mining technology in the Yima Yuejin coal mine of Henan province and the Baojishan coal mine of Gansu province, the engineering practice of the fault rockburst prevention and monitoring was conducted, and its application effect is remarkable. There are 150 figures, 14 tables, and 306 references in this dissertation. Keywords fault; rockburst; static and dynamic loads superposition; microseism; multi- parameter; monitoring and warning; multi-scale IV Extended Abstract Rockburst is considered as one of the serious coal or rock dynamic disasters in coal mine. It is caused by elastic strain energy emitted in a sudden, rapid, and violent way from coal or rock mass, often accompanied by an airblast or windblast and violent failures which can disrupt mine ventilation, pose a danger to miners due to flying material, and may also cause a large release of strata gas and propagate explosive dust into the air. Practices indicate that rockbursts mainly occur in the area of high stress due to coal pillar, longwall panel with hard roof, fault zone, and fold structure region. Thereinto, the rockburst ouccurred in fault zone is more serious and complicated. In this dissertation, the static and dynamic loads superposition mechanism of fault rockburst and its multi-scale precursors identification, spatio-temporal monitoring and warning with microseismic multi-parameter, and engineering practice of prevention and monitoring were systematically studied using a combination research of theoretical analysis, numerical simulation, physical mechanics experiment, similarity simulation experiment, numerical test, and engineering practice. This research suggested that fault rockburst also is a coal-rock dynamic disaster. As underground operations approach fault structures, elastic strain energy accumulated in the surrounding coal or rock mass releases in a sudden, rapid, and violent way under the effect of fault directly or indirectly involved. As a result, the static and dynamic loads superposition mechanism called “one disturbance, two loads, three objects, and four types” was proposed for the fault rockburst. The mechanism indicated that fault rockburst is caused by the mining disturbance, induced by the superposition of static and dynamic loads, resulted from the interactions between fault, roof, and coal pillar. It could be classified into four types fault activation triggering, roof fracture and unstability triggering, coal pillar failure triggering, and coupled failures triggering including abovementioned three types. Fault rockburst induced by fault activation was analyzed by taking the fault as the research object. The results indicated that there were two kinds of s for the fault activation with up unlocking and down unlocking under static load, and the fault unlocking was decided by fault friction strength, fault dip angle, and the ratio between horizontal stress and vertical stress. The effect of anomalously low friction on fault plane was easy to occur when dynamic load was applied, and the disturbance effect of dynamic load in the minimum principal stress direction was more significant than that of the maximum principal stress. It was easier to trigger fault activation through changing the stress state of the fault and its active process, and could further trigger greater stress drop than expected. In-situ observations show that fault generally maintained the locked state under pure static load. In conclusion, the mechanical mechanism of V fault activation rockburst is the equivalent cleavage failure of fault surrounding rock mass induced by static load and the fault activation induced by the anomalously low friction effect on fault plane as dynamic load applied. Fault rockburst induced by roof fracture and unstability was analyzed by taking the roof in fault zone as the research object. The results indicated that the load-carrying ability of the roof was greatly weakened due to the existence of fault, and this ability as the longwall panel advances in the hanging wall of fault was better than that of the footwall. It allows us to conclude that the roof is easier to fracture as the longwall panel advances in the footwall of fault. As a consequence, the risk of a fault rockburst will be higher when the longwall panel advances in the footwall of fault than that of the hanging wall. In addition, the rebound and compression effects and the dynamic load generated in the process of roof deation and fracture can also influence the stress state of fault. Fault rockburst induced by coal pillar failure was analyzed by taking the fault, roof, and coal pillar as the research object. The results indicated that the stress state within the coal pillar was in four cases a voussoir beam structure is present and before/after rotation of block A, and a voussoir beam structure is absent and before/after rotation of block A. The stress on the coal pillar is much higher in the first case than the other cases, and its ultimate stress could reach approximately 7.93 times of its uniaxial compressive strength. Under such high stress, the coal pillar is normally fai