单机及成组液压支架姿态监测方法和系统研究.pdf
万方数据 太原理工大学硕士研究生学位论文 I 单机及成组液压支架姿态监测方法和系统研究 摘 要 煤矿是支撑国民经济发展的重要组成部分,长期以来国内外围绕提高 煤矿的开采效率做了大量的科研工作,使得综采设备在井下得到大规模应 用。液压支架在井下起支撑的作用,保证其正常运行也就保证了其他综采 设备的正常运行和操作人员的安全,从而才能使得整个采煤过程的顺利进 行。通过对液压支架姿态进行监测可以有效降低故障率,但目前姿态的监 测方法存在很多问题,大多只能监测单台支架、无法对成组支架的监测数 据进行融合分析,姿态计算不准确,监测系统不完善,监测不及时等问题。 本文利用互联网信息技术,数据融合及分析技术、传感器技术、人机 交互等技术,将单机及成组液压支架作为研究对象,并以单机及成组支架 的姿态监测方法为核心建立液压支架姿态监测系统,达到监测系统更加完 善,监测更加及时有效的目的。 首先,将测量角度转换为计算角度,以此作为多角度平均值算法的计 算数据对单台液压支架实际工况下的姿态进行解析。其次,在单台液压支 架的基础上提出了一种基于灰色马尔科夫理论的液压支架记忆姿态监测方 法。该方法采用灰色马尔科夫理论,根据液压支架监测值得出记忆姿态相 关参数预测值,实现横向、纵向、成组监测。之后,以组态王为开发环境, SQL Server 和 Matlab 为工具,单机及成组液压支架姿态的监测方法为核心 建立姿态监测系统,该系统包含了单机、成组、视频、报表和报警等系统。 最后根据实际工况下液压支架的支撑状态建立试验平台,模拟液压支架的 万方数据 太原理工大学硕士研究生学位论文 II 运行过程,采集相应的数据,对监测方法和系统进行验证,结果表明该系 统不仅能够对实际工况下单机及成组液压支架的姿态进行监测,而且监测 过程更加及时准确,大大降低井下事故的发生。 本文得到的结论为提出一种多角度融合算法对液压支架姿态进行解 析。多角度的融合和考虑传感器测量角度与预测角度的误差对单台液压支 架姿态进行分析,提高了姿态计算的精度;提出了基于灰色马尔科夫理论 的液压支架记忆姿态监测方法,该监测方法对数据进行融合,不仅能够对 成组液压支架姿态进行监测,而且提高数据的利用效率。在灰色理论的基 础上运用马尔科夫理论,利用实际数据代替预测数据提高预测姿态的准确 性,此种方法也使得对液压支架姿态的监测更加及时;建立了液压支架姿 态监测系统,其包含单台液压支架在实际工况下可能出现的姿态,并对单 台液压支架各个相关数据和成组液压支架姿态进行监测,使得监测范围更 加全面,符合实际情况,有效减低事故的发生。通过建立试验台验证了该 方法及系统的有效性。 关键词液压支架,姿态计算,姿态监测,灰色马尔科夫,监测系统 万方数据 太原理工大学硕士研究生学位论文 III RESEARCH ONATTITUDE MONITORING AND SYSTEM FOR SINGLE AND GROUP HYDRAULIC SUPPORTS ABSTRACT Coal mine is an important part for supporting the development of national economy. For a long time, a lot of research work had been done around the improvement of coal mining efficiency at home and abroad, so that fully mechanized mining equipment had been widely applied . The function of the hydraulic support in the underground is the support the roof. To ensure its normal operation, it will also ensure the normal operation of other fully mechanized mining equipment and the safety of operators, so as to make the whole coal mining process proceed smoothly. Monitoring the attitude of hydraulic support can effectively reduce the failure rate, but there are many problems in the present attitude monitoring s. Most of them can only monitor the single support, and can not integrate the monitoring data of the group support. The attitude calculation is inaccurate, the monitoring system is not perfect, and the monitoring is not timely. In this paper, Internet ination technology, data fusion and analysis technology, sensor technology and human-machine interaction technology were applied. A single machine and a group of hydraulic supports were taken as the research object, and the attitude monitoring system of the single and the group support were used as the core to 万方数据 太原理工大学硕士研究生学位论文 IV establish the attitude monitoring system of the hydraulic support. So that the monitoring system is more perfect and the monitoring is more timely and effective. First, the measurement angle was converted to the calculation angle, which was used as the calculation data of the multi angle average value algorithm to analyze the attitude of the single hydraulic support under the actual working condition. Secondly, based on the single hydraulic support, a memory attitude monitoring of hydraulic support based on Grey-Markov theory was proposed. The was based on Grey-Markov theory. According to the monitoring of hydraulic support, it was worthwhile to predict the relative parameters of memory attitude, and achieve lateral, longitudinal and group monitoring. After that, the attitude monitoring system was set up with the development environment of Kingview, SQL Server and Matlab as the tool, and the monitoring of single and group hydraulic support attitude as the core. The system included single machine, group, video, report and alarm system. Finally, the test plat was established, according to the actual working condition, the support state of the hydraulic support. The operation process of the hydraulic support was simulated, the corresponding data was collected, and the monitoring and system were verified. The results shown that the system could not only monitor the attitude of the single and the group hydraulic supports under the actual working condition, but also the monitoring process was more timely and accurate, which greatly reduced the occurrence of the accident under the well. 万方数据 太原理工大学硕士研究生学位论文 V The conclusions obtained in this paper are as follows A multi angle fusion algorithm is proposed to analyze the attitude of hydraulic support. By multi angle fusion and taking into account the error of sensors measurement angle and prediction angle, the attitude of a single hydraulic support is analyzed, which improves the accuracy of attitude calculation; A memory attitude monitoring for hydraulic support based on Grey-Markov theory is proposed. The data fusion can not only monitor the attitude of group hydraulic supports, but also improve the efficiency of data utilization. Based on the Grey theory, Markoff theory is applied. Using actual data instead of prediction data to improve the accuracy of prediction attitude. This also makes the monitoring of hydraulic support attitude more timely; The attitude monitoring system of the hydraulic support is set up, which includes the possible attitude of the single hydraulic support in the actual working condition, and monitoring the relevant data of the single hydraulic support and the attitude of the group hydraulic support, which makes the monitoring range more comprehensive, cons to the actual situation and effectively reduces the occurrence of the accident. The effectiveness of the and system is verified through the establishment of a test bench. KEY WORDShydraulic support, attitude calculation, attitude monitoring, Grey-Markoff, monitoring system 万方数据 太原理工大学硕士研究生学位论文 VI 万方数据 太原理工大学硕士研究生学位论文 VII 目 录 第一章 绪 论........................................................................................................1 1.1 引言.........................................................................................................1 1.2 研究背景、目的及意义.........................................................................1 1.2.1 研究背景......................................................................................1 1.2.2 研究目的......................................................................................2 1.2.3 研究意义......................................................................................2 1.3 国内外研究动态.....................................................................................2 1.3.1 液压支架......................................................................................2 1.3.2 单机液压支架姿态分析..............................................................2 1.3.3 软件系统监测..............................................................................3 1.3.4 虚拟现实监测..............................................................................3 1.3.5 目前存在的问题..........................................................................3 1.4 主要研究内容与技术路线.....................................................................4 1.5 小结.........................................................................................................5 第二章 单机液压支架姿态监测方法..................................................................7 2.1 引言.........................................................................................................7 2.2 液压支架的主要结构及工作原理.........................................................7 2.2.1 液压支架的结构..........................................................................7 2.2.2 液压支架的工作原理..................................................................8 2.3 实际工况下姿态监测方法.....................................................................9 2.3.1 传感器的理论布置方案..............................................................9 2.3.2 监测方案介绍..............................................................................9 2.4 实际工况下液压支架姿态分析.............................................................9 2.4.1 实际工况下的姿态......................................................................9 2.4.2 实际角度值转换和多角度计算液压支架的姿态....................10 2.5 实际工况下液压支架姿态解析...........................................................12 2.5.1 简化液压支架结构....................................................................12 万方数据 太原理工大学硕士研究生学位论文 VIII 2.5.2 实际工况下液压支架的姿态计算............................................12 2.5.3 实测数据的分析及结论............................................................16 2.6 小结.......................................................................................................17 第三章 成组液压支架姿态监测方法................................................................19 3.1 引言.......................................................................................................19 3.2 监测方法介绍.......................................................................................19 3.2.1 监测过程....................................................................................19 3.2.2 监测的对象................................................................................20 3.3 监测方法应用的理论...........................................................................20 3.3.1 记忆姿态....................................................................................20 3.3.2 灰色理论....................................................................................21 3.3.3 马尔科夫链................................................................................22 3.3.4 灰色马尔科夫............................................................................23 3.4 纵向监测曲线.......................................................................................23 3.4.1 单机监测曲线............................................................................23 3.4.2 成组监测曲线............................................................................24 3.5 横向监测曲线.......................................................................................24 3.6 小结.......................................................................................................24 第四章 液压支架监测系统设计及测试............................................................25 4.1 引言.......................................................................................................25 4.2 系统设计目标.......................................................................................25 4.3 系统总体设计.......................................................................................26 4.3.1 系统的结构功能设计................................................................26 4.3.2 各个体系的功能设计................................................................27 4.4 系统硬件设计.......................................................................................28 4.4.1 局域网........................................................................................28 4.4.2 倾角传感器................................................................................29 4.4.3 陀螺仪........................................................................................33 4.4.4 I/O 模块和级联设备的选择.......................................................34 万方数据 太原理工大学硕士研究生学位论文 IX 4.4.5 无线 WIFI 和数据接收设备.....................................................36 4.4.6 视频监测设备............................................................................36 4.5 系统软件设计.......................................................................................36 4.5.1 系统开发环境............................................................................36 4.5.2 系统开发其他相关软件的选择................................................38 4.6 系统的后台程序...................................................................................39 4.7 数据采集原理.......................................................................................40 4.7.1 软件数据采集原理....................................................................40 4.7.2 硬件数据采集原理....................................................................44 4.8 建立人机交互界面的建立及介绍.......................................................48 4.8.1 组态王变量名称的命名及规则................................................48 4.8.2 变量和设备的连接....................................................................48 4.8.3 液压支架姿态监测系统首页....................................................49 4.8.4 单机监测系统............................................................................50 4.8.5 成组监测系统............................................................................51 4.8.6 视频监测系统............................................................................51 4.8.7 报表系统....................................................................................52 4.8.8 报警系统....................................................................................53 4.9 小结.......................................................................................................53 第五章 样机实验平台的搭建............................................................................55 5.1 引言.......................................................................................................55 5.2 液压支架三维建模...............................................................................55 5.2.1 单体液压支架模型....................................................................55 5.2.2 液压支架模型装配....................................................................57 5.2.3 成组液压支架装配....................................................................58 5.2.4 液压支架的仿真运动................................................................58 5.3 简化液压支架模型...............................................................................60 5.3.1 建立试验液压支架模型............................................................60 5.3.2 装配试验液压支架模型、优化零件结构及尺寸和仿真运动64 万方数据 太原理工大学硕士研究生学位论文 X 5.3.3 绘制试验液压支架模型零件图................................................65 5.4 制作实体液压支架...............................................................................66 5.4.1 零件部件制作............................................................................66 5.4.2 连接部件的选购........................................................................67 5.5 样机试验平台的安装调试...................................................................67 5.5.1 液压支架实体模型的安装调试................................................67 5.5.2 传感器、I/O 模块、级联设备和路由器的安装......................68 5.5.3 井下模拟场景的建立................................................................70 5.6 传感器、I/O 模块、级联设备和上位机的接通.................................70 5.7 网络通讯测试.......................................................................................72 5.8 硬件测试...............................................................................................73 5.8.1 传感器通讯测试........................................................................73 5.8.2 传感器数据精度测试................................................................74 5.9 小结.......................................................................................................74 第六章 试验研究及结论....................................................................................77 6.1 引言.......................................................................................................77 6.2 制定试验方案.........................................................