大倾角煤层上顺槽沿空留巷顶板抽冒控制技术研究.pdf
硕士学位论文 大倾角煤层上顺槽沿空留巷顶板抽冒 控制技术研究 Research on Control Technology for Roof Caving in Gob-side Entry Retaining in Upper Roadway within Deeply Inclined Coal Seam 作 者吴少旭 导 师曹胜根 教授 中国矿业大学 二⚪一九年五月 学位论文使用授权声明 学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 中图分类号 TD353 学校代码 10290 UDC 622 密 级 公开 中国矿业大学 硕士学位论文 大倾角煤层上顺槽沿空留巷顶板抽冒 控制技术研究 Research on Control Technology for Roof Caving in Gob-side Entry Retaining in Upper Roadway within Deeply Inclined Coal Seam 作 者 吴少旭 导 师 曹胜根 申请学位 工学硕士学位 培养单位 矿业工程学院 学科专业 采矿工程 研究方向 岩体力学与岩层控制 答辩委员会主席 柏建彪 评 阅 人 盲审 二○一九年五月 致谢致谢 仿佛一刹那, 三年就过去了, 2016 年, 我带着对科研的好奇和对知识的渴望 跨入了中国矿业最高学府中国矿业大学,在这片美丽、庄严而又亲切的校园之中 开始了我人生中最重要的三年硕士生涯。光阴荏苒,日月如梭,如今我即将结束 在中国矿业大学的求学生涯,回首往事,心中万千感慨。 求学之路漫长而又短暂,充满艰难而倍感爽快,科研路上有汗水和辛酸,也 有胜利和荣耀,三年的科研生活充实没有遗憾。在临近毕业前,我要向三年来给 予我支持和帮助的老师、同学、亲人和朋友表示由衷的感谢。 首先感谢我的导师曹胜根教授将我领上科学之路, 悉心教我科研路上的点点 滴滴。 在论文完成的过程中, 从论文的选题、 研究内容的把关和研究方法的指导, 直至论文最终定稿都包含了导师的智慧和心血。在此表示最衷心的感谢 感谢柏建彪教授、王襄禹教授、吴文达博士、吴博文博士、刘帅刚博士等在 论文中的帮助和指导,感谢武飞、张涛、朱祥祥、王杰等同学的热情帮助。 感谢我的父母这么多年来的陪伴、 鼓励和支持, 你们给了我源源不断的动力, 不负所望、努力成才是我最想做的事情,你们健健康康、生活开心是我最大的心 愿。 最后, 衷心地感谢各位专家、 教授在百忙之中评审本文, 由于作者水平有限, 文中定有许多疏漏和不足之处,热切希望得到批评、指正 吴少旭 二〇一九年五月 I 摘摘 要要 本文采用理论分析与 UDEC 数值模拟相结合的综合研究方法,基于国内外学 者对于大倾角煤层上顺槽沿空留巷顶板稳定性的研究成果, 结合长城三矿的生产 地质条件, 分析了大倾角煤层上顺槽沿空留巷充填体上方直接顶稳定性影响因素, 包括煤层倾角与顶板力学性质,研究了充填体上方直接顶抽冒发生规律与机理, 并针对引起抽冒现象发生的不同煤矿地质条件, 探讨了不同顶板支护方案的支护 效果及可行性。主要得到以下成果 (1)通过对大倾角煤层上顺槽沿空留巷充填体上方顶板进行受力分析,建 立顶板力学模型,分析充填体上方直接顶极限平衡区, 确定了充填体上方直接顶 极限平衡区的宽度, 得到煤层倾角与顶板力学性质是影响倾斜煤层沿空留巷时充 填体上方直接顶稳定性的主要因素。 (2)在煤层倾角为 35,顶板抗拉强度为 2MPa;煤层倾角为 45,顶板 抗拉强度为 2MPa; 煤层倾角为 45, 顶板抗拉强度为 3MPa 时 (共 3 种情况) , 沿空留巷充填体上方直接顶会发生抽冒现象。 (3)煤层倾角与顶板力学性质会对上顺槽沿空留巷充填体上方直接顶切向 位移量、 直接顶岩体的裂隙发育情况、破坏程度及直接顶老顶之间离层量产生直 接影响。 煤层倾角越大, 直接顶岩体切向位移越长, 直接顶岩体裂隙发育越严重, 破坏程度越大,直接顶与老顶离层量越小;顶板抗拉强度越大,直接顶岩体切向 位移越短,直接顶岩体裂隙发育越轻微,破坏程度越小,直接顶与老顶离层量越 小。 (4)煤层倾角较小时,直接顶的顶部与底部会受到切线方向的约束力,直 接顶中部切向滑移距离最大;而当煤层倾角增大时,顶部约束力逐渐变小,顶部 切向位移量与中部切向位移量近似相同。 而顶板抗拉强度的大小只会影响充填体 上方直接顶的切向位移量的大小,并不会影响其在法向上的分布。 (5)充填体上方直接顶与老顶之间出现最大离层量的位置偏向充填体处, 煤层倾角越大,这一特征越明显。但是,最大离层量的位置不随顶板抗拉强度的 变化而变化, 顶板抗拉强度只影响直接顶与老顶离层量的大小, 而不会影响其分 布。 (6)通过 UDEC 数值模拟,针对引起抽冒现象发生的不同煤矿地质条件, 提出了不同顶板支护方案,对比其支护效果并确定了合理的支护参数。 该论文有图 50 幅,表 5 个,参考文献 85 篇。 关键词关键词大倾角煤层;充填体顶板;稳定性影响因素;顶板抽冒机理;支护技术 II III Abstract By a comprehensive research combining theoretical analysis and UDEC numerical simulation is adopted. Based on the research results of domestic and foreign scholars on the stability of the roof of the inclined coal seam along the goaf, combined with the production geological conditions of the Changcheng No.3 Mine. The factors affecting the stability of the direct roof above the backfill, including the dip angle of the coal seam and the tensile strength of the roof are studied, and the caving law and mechanism of direct roof above the backfill are analyzed. Aiming at the different geological conditions that may cause the roof caving, the support effects and feasibility of the roof support schemes are discussed. Main results are as follows 1 Through the stress analysis of the direct roof above the backfill of the inclined coal seam, the mechanical model of the inclined coal roof is established, and the limit equilibrium area of the direct roof above the backfill is analyzed. The width of the limit equilibrium area of the direct roof is determined. The result indicates that the dip angle of the coal seam and the tensile strength of the direct roof are the main factors affecting the stability of the direct roof above the backfill in the inclined coal seam along the goaf. 2 The roof caving happens when the dip angle of the coal seam is 35, and the tensile strength of the direct roof is 2MPa, or when the dip angle of the coal seam is 45, and the tensile strength of the direct roof is 2MPa and 3MPa. 3 The dip angle of the coal seam and the mechanical properties of the roof will directly affect the tangential displacement of the direct roof above the backfill along the goaf, the development of the crack in the roof rock mass, the degree of damage and the amount of separation between the direct roof and the main roof. The larger the dip angle of the coal seam, the longer the tangential displacement of the roof rock mass, the more serious the fracture development of the roof rock mass, the greater the damage degree, and the smaller the amount of separation between the direct roof and the main roof. The greater the tensile strength of the direct roof, the shorter the tangential displacement of the roof rock mass, the smaller the fracture development of the roof rock mass, the smaller the damage degree, and the smaller the amount of separation between the direct roof and the main roof. 4When the dip angle of coal seam is small, the top and bottom of the direct roof will be bound by the tangential stress, and the tangential displacement at the middle of the direct roof will be the largest. When the coal seam dip angle increases, the top IV binding force will gradually become smaller, and the tangential displacement at the top of the direct roof will the same as that at the middle of the direct roof. The tensile strength of the roof only affects the amount of its tangential displacement and does not affect the distribution of tangential displacement in the normal direction. 5 The position of the maximum amount of separation between the direct roof and the main roof is close to the backfill. The larger the dip angle of the coal seam, the more obvious this feature is. However, the position of the maximum amount of separation does not change with the changes of the tensile strength of the roof. The tensile strength of the roof only affects the amount of separation, without affecting its distribution. 6 Through the UDEC numerical simulation, the different roof support schemes are proposed for different mine geological conditions that cause caving of the direct roof above the backfill. The support effects are compared and the reasonable support parameters are determined. There are 50 pictures, 5 tables, and 85 references. Keywords deeply inclined coal seam; direct roof above the backfill; stability factors; roof caving law; support technology V 目目 录录 摘摘 要要 ........................................................................................................................... I 目目 录录 .......................................................................................................................... V 图清单图清单 ........................................................................................................................ IX 表清单表清单 ..................................................................................................................... XIII 变量注释表变量注释表 ............................................................................................................. XIV 1 绪论绪论 ........................................................................................................................ 1 1.1 论文研究背景及意义.............................................. 1 1.2 研究现状综述.................................................... 1 1.3 主要研究内容及方法.............................................. 5 2 工程地质条件工程地质条件 ........................................................................................................ 7 2.1 地质概况........................................................ 7 2.2 巷道布置........................................................ 8 2.3 支护设计........................................................ 8 2.4 支护材料........................................................ 9 3 大倾角煤层上顺槽沿空留巷顶板抽冒机理理论分析大倾角煤层上顺槽沿空留巷顶板抽冒机理理论分析 ...................................... 10 3.1 充填体上方直接顶抽冒机理....................................... 10 3.2 充填体上方直接顶极限平衡区宽度................................. 11 3.3 本章小结....................................................... 14 4 沿空留巷充填体上方直接顶稳定性影响因素分析沿空留巷充填体上方直接顶稳定性影响因素分析 .......................................... 15 4.1 UDEC 模型建立与参数计算 ........................................ 15 4.2 数值模拟结果分析............................................... 18 4.3 顶板力学性质与煤层倾角对沿空留巷顶板稳定性的影响............... 25 4.4 本章小结....................................................... 32 5 沿空留巷支护技术研究沿空留巷支护技术研究 ...................................................................................... 34 5.1 提出支护方案................................................... 34 5.2 数值模拟结果分析............................................... 38 5.3 本章小结....................................................... 51 6 结论结论 ...................................................................................................................... 53 VI 参考文献参考文献 ..................................................................................................................... 55 作者简介作者简介 ..................................................................................................................... 60 学位论文原创性声明学位论文原创性声明 ................................................................................................. 61 学位论文数据集学位论文数据集 ......................................................................................................... 62 VII Contents Abstract ...................................................................................................................... III Contents .................................................................................................................... VII List of Figures ............................................................................................................ IX List of Tables ........................................................................................................... XIII List of Variables...................................................................................................... XIV 1 Introduction ........................................................................................................... 1 1.1 Research Background and Significance ................................................................... 1 1.2 Summary of Research Status ................................................................................... 1 1.3 Main Research Contents and s .................................................................... 5 2 Engineering Geological Condition....................................................................... 7 2.1 Geological Condition ............................................................................................... 7 2.2 Roadway Layout ...................................................................................................... 8 2.3 Support Design......................................................................................................... 8 2.4 Support Material ...................................................................................................... 9 3 Theoretical Analysis of Roof Caving Mechanism for Gob-side Entry Retaining in Upper Roadway whthin Deeply Inclined Coal Seam ........................ 10 3.1 Caving Mechanism of Direct Roof above the Backfill .......................................... 10 3.2 Width of Limit Equilibrium Area in Direct Roof above the Backfill .................... 11 3.3 Brief Summary ....................................................................................................... 14 4 Analysis of Factors Affecting the Stability of Direct Roof Above the Backfill along the Goaf ............................................................................................................ 15 4.1 UDEC Numerical Model Foundation and Parameter Selection ............................ 15 4.2 Results Analysis of Numerical Simulation ............................................................ 18 4.3 The Influence of Coal Seam Dip and Roof Mechanical Properties on the Roof Stability in Gob-side Entry Retaining .......................................................................... 25 4.4 Brief Summary ....................................................................................................... 32 5 Research on Support Technology in Gob-side Entry Retaining ..................... 34 5.1 Support Scheme ..................................................................................................... 34 5.2 Results Analysis of Numerical Simulation ............................................................ 38 VIII 5.3 Brief Summary ....................................................................................................... 51 6 Conclusions .......................................................................................................... 53 References ................................................................................................................... 55 Authors Resume ........................................................................................................ 60 Declaration of Dissertation Originality .................................................................... 61 Dissertation Data Collection ..................................................................................... 62 IX 图清单图清单 图序号 图名称 页码 图 1-1 技术路线图 6 Figure 1-1 Technology roadmap 6 图 2-1 煤岩层综合地质柱状图 7 Figure 2-1 Comprehensive geological histogram of coal and rock stratum 7 图 2-2 1904S 回风巷平面布置图 8 Figure 2-2 Layout plan of 1904S return air alley 8 图 3-1 上巷沿空留巷与下巷沿空留巷示意图 11 Figure 3-1 Gob-side entry retaining in upper lane and down lane 11 图 3-2 充填体上方直接顶受力分析 11 Figure 3-2 Stress analysis of direct roof above the backfill 11 图 3-3 充填体上方顶板极限平衡区宽度计算 12 Figure 3-3 Width calculation of Limit equilibrium area in direct roof above the backfill 12 图 4-1 数值模拟图及局部放大图 15 Figure 4-1 Numerical simulation and partial enlargement 15 图 4-2 裂隙监测区域与测线布置图 17 Figure 4-2 Fracture monitoring area and line layout 17 图 4-3 煤层倾角 15顶板抗拉强度 2MPa 18 Figure 4-3 Tensile strength of roof is 2MPa when the coal seam is inclined at 15 18 图 4-4 煤层倾角 15顶板抗拉强度 3MPa 19 Figure 4-4 Tensile strength of roof is 3MPa when the coal seam is inclined at 15 19 图 4-5 煤层倾角 15顶板抗拉强度 4MPa 19 Figure 4-5 Tensile strength of roof is 4MPa when the coal seam is inclined at 15 19 图 4-6 煤层倾角 25顶板抗拉强度 2MPa 20 Figure 4-6 Tensile strength of roof is 2MPa when the coal seam is inclined at 25 20 图 4-7 煤层倾角 25顶板抗拉强度 3MPa 20 Figure 4-7 Tensile strength of roof is 3MPa when the coal seam is inclined at 25 20 图 4-8 煤层倾角 25顶板抗拉强度 4MPa 21 Figure 4-8 Tensile strength of roof is 4MPa when the coal seam is inclined at 25 21 图 4-9 煤层倾角 35