电液控液压支架远程监控系统研究.pdf
R E 电液 Resear Electro 液控液 rch on ohydrau 硕士 液压支架 Remo ulic Po 作 导 中国 二〇 士学位论 架远程 te Mon owered 者何俊 师姚新 国矿业大 〇一四年 论文 程监控系 nitorin d Hydr 俊峰 新港 副教 大学 年五月 系统研 ng Syst raulic S 教授 研究 tem fo Suppor or rt 中图分类号 TD355 学校代码 10290 UDC 621 密 级 公开 中国矿业大学 硕士学位论文 电液控液压支架远程监控系统研究 Research on Remote Monitoring System for Electrohydraulic Powered Hydraulic Support 作 者 何俊峰 导 师 姚新港 副教授 申请学位 工学硕士 培养单位 机电工程学院 学科专业 机械设计及理论 研究方向 煤矿机电装备自动化 答辩委员会主席 李宝林 评 阅 人 二〇一四年五月 致谢致谢 本论文是在导师姚新港副教授的悉心指导下完成的,没有他的指导、鼓励及 资金上的大力支持,论文是不可能得以顺利完成的。师从三载,收获颇丰,感触 亦深。姚新港老师优秀的做人品质,严谨的治学态度,开拓创新的精神,高屋建 瓴把握全局的能力,忘我的工作精神给学生树立起潜移默化的典范作用,这也是 导师传授给学生最宝贵的财富。在此,谨向我的导师致以崇高的敬意。 在课题的研究过程中,课题组的王忠宾教授、谭超副教授、黄嘉兴副教授、 闫海峰副教授和刘新华副教授给予了具体的指导,另外,还得到了实验室周信、 司垒、季瑞、朱高生和刘艳芳等博士和硕士研究生以及师弟师妹们的大力支持和 无私帮助,在此致以最真挚的谢意。同时感谢我的家人在我求学期间给予我始终 如一的鼓励、关怀和帮助。 最后,感谢各位专家和学者在百忙之中审阅我的论文,并给予宝贵的指导。 在此,谨向各位专家和学者表示深深的谢意。 I 摘 要摘 要 综采工作面 “自动化” 和 “少人化” 对于提高煤矿开采安全性具有重要意义, 实现煤矿综采工作面自动化的关键就是对综采机电设备进行可靠的远程监测、 控 制及故障诊断,进而实现“少人化”综采工作面。电液控液压支架作为煤矿综采 工作面三机设备之一,是现代煤矿安全生产的重要支护设备,对电液控液压支架 实现远程监控是实现煤矿综采自动化的关键。 本文所研究的电液控液压支架远程 监控系统是综采工作面三机协同远程监控系统的重要子系统之一, 主要研究内容 包括 1 根据电液控液压支架远程监控系统的功能要求,分析了系统的体系架构, 完成了远程监控中心硬件平台的搭建。研究了综采工作面支架通信算法和协议, 实现了支架之间信息的实时传输。研发了电液控液压支架远程监控系统,实现了 电液控液压支架状态信息、 动作信息和故障报警信息的实时远程获取和显示以及 电液控液压支架各项数据的采集和归档查询。 2 针对电液控液压支架定时推溜时推溜不齐的问题,设计了支架推溜模糊 控制器。将主管路乳化液压力反馈值与设定值的偏差及偏差变化率作为输入,将 推溜时间作为输出, 实现了基于支架工的操作经验和专家知识的支架推溜时间模 糊智能控制。 提出了支架推溜模糊控制算法, 将模糊查询表输入到支架控制器中, 跟机自动化过程中自动查询模糊控制表中对应的控制输出, 可以解决支架推溜时 间的实时修正问题。 3 对电液控液压支架推溜模糊控制器进行了建模,基于 Simulink 对电液控 液压支架推溜模糊控制系统进行了仿真测试, 结果表明所设计的电液控液压支架 推溜模糊控制系统具有超调量小、响应时间短和误差小等优点,能够根据乳化液 压力变化自适应的调节每台支架的推溜时间。 4 针对上位机轮询 CAN 总线时存在的通讯延时问题,设计了新的通讯算 法和协议,并进行了工业性实验,测试了电液控系统向监控主机发送传感器数据 和故障信息的实时性和准确性。 该系统已于 2013 年 3 月在中国平煤神马集团六矿 22210 综采工作面投入使 用。应用结果表明,该系统达到了预期的功能需求。该系统的研发能够提高电液 控液压支架的自动化控制水平,具有良好的社会效益和经济效益。 该论文有图 74 幅,表 13 个,参考文献 82 篇。 关键词关键词电液控液压支架;综采自动化;远程监控;模糊控制;支架推溜 II Abstract “Automation“ and “less humanization” of mechanized mining face are of great significance for improvement of coal mining safety. The key to the implementation of mechanized mining face automation is to conduct reliable remote monitoring, control and fault diagnosis for mechanized mining electromechanical equipments which will achieve “less humanization“ of mechanized mining face. As one of three-machine in mechanized mining face, electrohydraulic powered hydraulic support is an important support equipment of modern coal safety production. The key to achieving mechanized mining automation is to achieve remote monitoring for electrohydraulic powered hydraulic support. This paper studies remote monitoring system for electrohydraulic powered hydraulic support which is an important subsystem of three -machine collaborative remote monitoring system in mechanized mining face, the main content includes 1 According to the function requirements of electrohydraulic powered hydraulic support remote monitoring system, the architecture of the system was analyzed and hardware plat of remote monitoring center was built. Communication algorithms and protocols of support in mechanized mining face was sdudied to achieve real-time transmission of ination between the supports. The remote monitoring system for electrohydraulic powered hydraulic support was developed, by which real-time inations about status, operation and fault alarm of electrohydraulic powered hydraulic support could be abtained in the distance, and datas of electrohydraulic powered hydraulic support could be collected and archived so as to be inquired. 2 A support push fuzzy controller was designed to the question that electrohydraulic powered hydraulic support couldn’t push orderly in timed push. Support push time fuzzy intelligent control based on operating experience and expert knowledge was achieved with the deviation of road emulsion pressure feedback value and set value as and the deviation rate as output. Support push fuzzy control algorithm was proposed and the problem that push time of support was real-time fixed can be solved by ing fuzzy query table to support controller in which support can automaticly query corresponding control output in automatic abstracting process. 3 After electrohydraulic powered hydraulic support fuzzy controller was modeled, a simulation test about electrohydraulic powered hydraulic support fuzzy III control system was conducted based on Simulink. The result showed that the support fuzzy control system designed was of advantages such as overshoot was small, response time was short and errors was small etc, and push time of support can be adaptively adjusted to pressure change of emulsion. 4 A new communication algorithms and protocols was proposed against the problem of communication delay when PC polls CAN bus, and real-time and accuracy in the process that the electrohydraulic system send sensor data and fault ination to the monitoring host were tested in technical examination spot. The system had been put into use in China Pingmei Shenma Group No.6 Mine 22210 mechanized mining face in March 2013. The field application proved that the system reached the requirements of desired function. The system can improve the automatic control level of electrohydraulic powered hydraulic support and offer excellent social and economic effectiveness. In this paper, there are 74 figures, 13 tables and 82 references. Keywords electrohydraulic powered hydraulic support; mechanized mining automation; remote monitoring; fuzzy control; support push IV 目目 录录 摘摘 要要............................................................................................................................ I 目目 录录......................................................................................................................... IV 图清单图清单...................................................................................................................... VIII 表清单表清单...................................................................................................................... XIII 变量注释表变量注释表 ............................................................................................................. XIV 1 绪论绪论............................................................................................................................. 1 1.1 课题来源及背景 ..................................................................................................... 1 1.2 课题研究现状与存在问题 ..................................................................................... 1 1.3 课题研究内容与方法 ............................................................................................. 4 1.4 课题研究意义 ......................................................................................................... 4 2 电液控液压支架远程监控系统的体系架构电液控液压支架远程监控系统的体系架构 ............................................................ 5 2.1 平煤六矿 22210 综采工作面简介 ......................................................................... 5 2.2 监控系统功能要求 ................................................................................................. 6 2.3 监控系统硬件结构 ................................................................................................. 7 2.4 通讯网络 ............................................................................................................... 10 2.5 数据采集 ............................................................................................................... 10 2.6 本章小结 ............................................................................................................... 10 3 电液控液压支架远程监控系统的设计电液控液压支架远程监控系统的设计 .................................................................. 11 3.1 远程监控中心设计 ............................................................................................... 11 3.2 电液控液压支架状态信息采集 ........................................................................... 19 3.3 综采工作面电液控液压支架通信算法与协议设计 ........................................... 20 3.4 电液控液压支架实时数据采集系统设计 ........................................................... 24 3.5 电液控液压支架远程监控系统人机交互界面设计 ........................................... 32 3.6 本章小结 ............................................................................................................... 38 4 基于模糊控制理论的电液控液压支架推溜控制研究基于模糊控制理论的电液控液压支架推溜控制研究 .......................................... 39 4.1 模糊控制理论应用于支架推溜控制问题的提出 ............................................... 39 4.2 模糊控制理论 ....................................................................................................... 41 4.3 支架模糊控制器的设计 ....................................................................................... 43 4.4 本章小结 ............................................................................................................... 52 V 5 模糊控制系统仿真及系统通讯性能测试模糊控制系统仿真及系统通讯性能测试 .............................................................. 53 5.1 电液控液压支架模糊控制器的 MATLAB 建模 ................................................. 53 5.2 电液控液压支架模糊控制系统的仿真测试 ....................................................... 56 5.3 上位机轮询 CAN 总线通讯设计及性能测试 ..................................................... 58 5.4 本章小结 ............................................................................................................... 66 6 总结与展望总结与展望 .............................................................................................................. 67 6.1 总结 ....................................................................................................................... 67 6.2 展望 ....................................................................................................................... 68 参考文献参考文献 ..................................................................................................................... 69 作者简历作者简历 ..................................................................................................................... 75 学位论文原创性声明学位论文原创性声明 ................................................................................................. 77 学位论文数据集学位论文数据集 ......................................................................................................... 79 VI Contents Abstract ........................................................................................................................ II Contents ..................................................................................................................... VI List of Figures ......................................................................................................... VIII List of Tables ........................................................................................................... XIII List of Variables ...................................................................................................... XIV 1 Introduction ............................................................................................................... 1 1.1 Origin and Background of Project ........................................................................... 1 1.2 Research Status and Problems of Project ................................................................ 1 1.3 Research Contents and s of Project ............................................................. 4 1.4 Project Research Significance ................................................................................. 4 2 Architecture of Remote Monitoring System for Electrohydraulic Powered Hydraulic Support ....................................................................................................... 5 2.1 Brief Introduction to Pingmei No.6 Mine 22210 Mechanized Mining Face .......... 5 2.2 Function Requirements of Monitoring System ....................................................... 7 2.3 Hardware Architecture of Monitoring System ........................................................ 7 2.4 Communication Network ...................................................................................... 10 2.5 Data Acquisition .................................................................................................... 10 2.6 Summary ............................................................................................................... 10 3 Design of Remote Monitoring System for Electrohydraulic Powered Hydraulic Support ........................................................................................................................ 11 3.1 Design of Remote Monitoring Center .................................................................... 11 3.2 Status Ination Acquisition of Electrohydraulic Powered Hydraulic Support 19 3.3 Communication Algorithm and Protocol Design of Mechanized Mining Face Electrohydraulic Powered Hydraulic Support ............................................................. 20 3.4 Real-time Data Acquisition System Design of Electrohydraulic Powered Hydraulic Support ........................................................................................................ 24 3.5 HMI Design of Remote Monitoring System for Electrohydraulic Powered Hydraulic Support ........................................................................................................ 32 3.6 Summary ............................................................................................................... 38 4 Research on Push Control for Electrohydraulic Powered Hydraulic Support Based on Fuzzy Control Theory ............................................................................... 39 VII 4.1 Raise of Issue that Fuzzy Control Theory is Applied to Support Push Control .... 39 4.2 Fuzzy Control Theory ............................................................................................ 41 4.3 Design of Support Fuzzy Controller...................................................................... 43 4.4 Summary ............................................................................................................... 52 5 Simulation of Fuzzy Control System and Test of System Communication Perance ............................................................................................................... 53 5.1 MATLAB Modeling of Electrohydraulic Powered Hydraulic Support Fuzzy Controller ..................................................................................................................... 53 5.2 Simulation of Electrohydraulic Powered Hydraulic Support Fuzzy Control System 56 5.3 Communication Design of Principal Coputer Polling CAN-bus and Perance Test ............................................................................................................................... 58 5.4 Summary ...............................................................