煤层底板隐伏充水断层扩展的模拟实验研究.pdf
工程硕士专业学位论文 煤层底板隐伏充水断层扩展的模拟煤层底板隐伏充水断层扩展的模拟 实验研究实验研究 Study on expansion of concealed water filling fault in coal floor by simulation experiments 作 者黄 浩 校内导师王经明 教授 校外导师刘其声 研究员 华北科技学院 2015 年 6 月 万方数据 中图分类号 X9 学校代码 11104 UDC 密 级 公开 华北科技学院 工程硕士专业学位论文 煤层底板隐伏充水断层扩展的模拟实验研究煤层底板隐伏充水断层扩展的模拟实验研究 Study on expansion of concealed water filling fault in coal floor by simulation experiments 作 者 黄 浩 校内导师 王经明 校外导师 刘其声 申请学位 工程硕士专业学位 培养单位 研究生处 学科专业 安全工程 研究方向 煤矿水灾安全技术 答辩委员会主席 靳德武 评 阅 人 靳德武、李小明 二○一五年六月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解华北科技学院有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理,即①研究生在校攻读学位 期间论文工作的知识产权单位属于华北科技学院, 学校有权保存并向国家有关部 门或机构送交论文的复印件和电子版,允许学位论文被查阅(除在保密期内的保 密论文外) ;②学校可以公布学位论文的全部或部分内容,可以允许使用影印、 缩印或扫描等复制手段保存和汇编学位论文, 学校可以将公开的学位论文作为资 料在档案馆、图书馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有 关法规,同意中国国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 本学位论文属于 □保密,在 年解密后适用本授权书。 □不保密,同意在校园网上发布,供校内师生和与学校有共享协议的单位 浏览。 (请在以上相应方框内打“√” ) 作者签名 校内导师签名 年 月 日 校外导师签名 年 月 日 万方数据 论文审阅认定书论文审阅认定书 研究生 在规定的学习年限内, 按照研究生培养方案的 要求,完成了研究生课程的学习,成绩合格;在我的指导下完成本学 位论文,经审阅,论文中的观点、数据、表述和结构为我所认同,论 文撰写格式符合学校的相关规定, 同意将本论文作为学位申请论文送 专家评审。 校内导师签字 校外导师签字 年 月 日 万方数据 致致 谢谢 暑往寒来,逝者如斯。此刻,三年时间较以往更加短暂。回忆如同迁徙的雁 不知疲倦地在脑海翱翔,纵有万般不舍,我们即将毕业了。回想三年学习生活之 路认识了一些有知识的学者、工人,接触到诸多新奇的事物,品尝了许多或苦 或甜的历程。这些经历丰富了我的人生,对此我万分感激。 首先,感谢我的导师王经明教授,他学识渊博,慎学笃行,是我学习路上的 目标和标杆;他为人高风亮节,坦率质朴,是我人生路上的指导和标尺;他亦师 如亲,授渔倾囊,是我成长路上的指引和灯塔。王老师在学习和生活上给予我莫 大的帮助。从入学时课题选择,工作规划,到生活关怀,出差实践安排,再到平 时督促批评,最后到论文指导。三年时间,王老师给予的我太多,此生能成为他 的学生是我莫大的荣幸。 感谢校外导师刘其声研究员,刘老师为人睿智不失风趣,和蔼不失严谨。在 我论文选题把关给予诸多指点,并且在毕业实践中提供了很多帮助和指导,为工 作积累了经验。 感谢刘德民老师,刘老师术业精深,真诚无私。在论文数值模拟方面。我多 次向其求教讨论,刘老师诲人不倦,悉心指导。能够顺利完成模拟部分,离不开 他的帮助和指导。 感谢地质教研室尹尚先教授、杨武洋教授、林标灿教授、李永军教授、李小 明教授、连会青教授等老师,回想七年前,是你们指引我接触地质这一行业,是 你们儒雅、智慧的人格魅力和认真无私的教育关怀使我爱上这一行业。 感谢研究生处徐景德教授、张亮老师等。你们在我们研究生期间无论从生活 还是学习上,关怀备至,勤策奋勉,为我们能顺利完成学业付出很大辛劳。 感谢我的 21 位研究生同学们, 不管开心亦或苦闷我们一起相互支持、 鼓励, 无数个有你们陪伴的日子将是我永远难忘的回忆。感谢我的师弟孙长礼、高宇, 他们在实验以及资料整理方面提供了很多帮助, 使我顺利完成论文室内实验部分。 感谢各位专家、老师在百忙之中参加我的论文的评阅、答辩,并期待着得到 您的指导和帮助。 万方数据 I 摘摘 要要 如何解决煤层底板突水问题, 确保安全生产是我国华北型煤矿都要面对的困 难。对底板煤层存在隐伏断层威胁的矿井来说尤其迫切。由于其隐蔽性,很难做 到有效的观测和探查。所以对底板隐伏断层突水机理的研究仍然存在许多问题。 本文主要围绕煤层底板含有隐伏充水断层的开采过程,通过相似材料模拟、 FLAC3D 数值模拟以及现场工程实践的手段, 观测和分析在水压、 采动压力的共 同作用下煤层底板突水的一般规律。 综合分析国内外学者对煤层底板、断层突水进行研究的重要成果,简要分析 了断层突水的力学机制。 通过相似材料模拟和数值模拟实验观测底板隐伏断层不 同组合形式、水压、初始发育高度、产状等条件下的煤层开采过程。总结底板破 坏带和断层裂隙带扩展发育规律以及塑性破坏区动态演化过程, 实验证明在承压 水水压和采动应力共同作用下,底板薄弱带(断层)的扰动存在递进导升扩展的 现象, 即递进导升突水机理。实验发现底板不同条件下的隐伏断层裂隙沟通底板 破坏带的规律存在差异。倾向与工作面推进方向相反、发育高度较大的断层,递 进导升越厉害,更容易发生突水。阐述了煤层底板递进导升突水机理,分析其突 水判别式中关键参数的获取方法。 结合轩岗刘家梁煤矿 5124 工作面的工程实例,依据现场试验观测得出的参 数,设计合理的 FLAC3D 数值模型。通过开挖计算研究了该突水机理在实际工 程中的应用,进一步验证了相似材料和数值模拟试验的结果。 该论文有图 57 幅,表 4 个,参考文献 52 篇。 关键词关键词底板突水机理;隐伏断层;递进导升;相似模拟;数值模拟 万方数据 II Abstract It is a difficulty that how to solving the problem of water inrush from coal floor to make sure the safety production in the North China coal field. It is especially urgent for the mine which has the concealed fault threat in the coal floor. Because of its concealment, it is hard to observe and probe effectively. Thus the research on floor water inrush mechanism of concealed faults still has many problems. This thesis mainly focuses on the mining process of concealed water-filling faults in coal seam floor. The general rule of water inrush from coal floor under the action of water pressure and mining pressure is observed and analyzed by the means of similar material simulation, FLAC3D numerical simulation and engineering practice. This thesis has comprehensively analyzed domestic and foreign scholars’ important research results on the coal seam floor, fault water inrush, and briefly derived the mechanical mechanism of fault water inrush. The mining process of coal under the different conditions of concealed fault in floor combining s, water pressure, initial height, and occurrence is observed through the s of analog and numerical simulation experiments. Also, this thesis has summarized the extension development laws of the floor damage state and fracture belt as well as the dynamic evolution process of plastic failure state. Experimental results show that the disturbance of floor weak state fault has the progressive rise phenomenon under the influence of water pressure and mining stress, that is, progressive guide rise mechanism of water inrush. The difference in the law of the concealed faults fracture combining the floor damage state is found under different floor conditions. In addition, tendency is opposite to the direction of working face, and the larger the development height of the fault is, the more drastic the progressive rise will be, then the more likely to water inrush. Then, the thesis has explained the progressive guide rise mechanism of water inrush, and analyzed the of obtaining the key parameters in the discriminant of water inrush. Combing with the engineering example of the working face 5124 of Liu jialiang coal in Xuangang, and according to the parameters gained by field test, the reasonable FLAC3D numerical model is designed. The application of water inrush mechanism in practical engineering is researched through the calculation of the excavation, and the results of the similar material and numerical simulation experiments are further 万方数据 IV 目录目录 摘摘 要要 .......................................................................................................................... I I 目目 录录 ........................................................................................................................ ⅣⅣ 图清单图清单 .................................................................................................................. VIIIVIII 表清单表清单 ...................................................................................................................... XIXI 1 1 绪论绪论 ........................................................................................................................ 1 1 1.1 研究目的及意义.................................................. 1 1.2 底板突水机理研究现状............................................ 1 1.3 底板突水的实验研究现状.......................................... 4 1.4 断层突水研究现状................................................ 5 1.5 研究内容及技术路线.............................................. 6 2 2 断层突水机理研究断层突水机理研究 ................................................................................................ 9 9 2.1 断层突水的形式及规律 ............................................ 9 2.2 断层突水的力学机制 ............................................. 10 3 3 相似材料模拟实验研究相似材料模拟实验研究 ........................................................................................ 1717 3.1 相似材料模拟技术............................................... 17 3.2 实验目的 ....................................................... 18 3.3 实验设备与方案 ................................................. 18 3.4 实验过程与分析 ................................................. 20 3.5 小结 ........................................................... 27 4 4 FLAC3DFLAC3D 数值模拟实验研究数值模拟实验研究 .................................................................................. 2929 4.1 FLAC3D 数值模拟技术 ............................................ 29 4.2 实验方案与条件................................................. 34 4.3 实验过程与分析................................................. 36 4.4 小结........................................................... 45 5 5 递进导升突水机理在刘家梁煤矿的应用递进导升突水机理在刘家梁煤矿的应用 ............................................................ 4747 5.1 煤层底板隐伏断层的递进导升突水机理............................. 47 5.2 5124 工作面水文地质 ........................................... 49 5.3 5124 工作面底板水文地质探测 .................................... 52 万方数据 V 5.4 煤层底板破坏深度测试........................................... 58 5.5 数值模拟分析.................................................. 62 6 6 结论和展望结论和展望 .......................................................................................................... 6767 6.1 结论........................................................... 67 6.2 展望........................................................... 68 参考文献参考文献 .................................................................................................................. 6969 作者简历作者简历 .................................................................................................................. 7272 学位论文原创性声明学位论文原创性声明 .............................................................................................. 7373 学位论文数据集学位论文数据集 ...................................................................................................... 7474 万方数据 VI Contents AbstractI I ContentsⅣⅣ List of FiguresⅧⅧ List of TablesⅪⅪ 1 Introduction1 1.1Research objectives and significance1 1.2 Floor water inrush mechanism research status1 1.3 Experimental research status of floor water inrush4 1.4 Fault Water inrush research status5 1.5 Research contents and technical route6 2 Study on mechanism of fault water inrush9 2.1 The and rule of fault water inrush9 2.1 Mechanical mechanism of fault water inrush10 3 Study by similar material simulation experiments17 3.1 Similar simulation17 3.2 FLAC3D numerical simulation 18 3.3 Experimental equipment and scheme18 3.4 Experiment process and analysis20 3.5 Summary27 4 Study by flac3d numerical simulation experiments 29 4.1 FLAC3D numerical simulation29 4.2 Experimental scheme and condition34 4.3 Experiment process and analysis 36 4.4 Summary45 5 Application of progressive inrush mechanism of water inrush in Liu jialiang coal mine 47 5.1 The mechanism of the progressive water inrush of the concealed faults of coal floor47 万方数据 VII 5.2 Hydrogeology of working surface 5124 49 5.3 Hydrogeology exploring of working surface 5124 floor52 5.4 Coal seam floor failure depth test 58 5.5 Numerical simulation analysis62 6 Conclusions and Prospect67 6.1 Conclusion67 6.2 Prospect68 References69 Author’s Resume72 Declaration of Thesis Originality„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„7373 Thesis/Dissertation Data Collection74 万方数据 VIII 图清单图清单 图序号 图名称 页码 图 1-1 相似材料模拟实验示意图 7 Figure 1-1 schematic diagram of similar material simulation experiment 图 1-2 技术路线图 8 Figure 1-2 Technology Roadmap 图 2-1 断层活化力学模型 11 Figure 2-1 Mechanical fault activation model 图 2-2 断层突水机理分析示意图 13 Figure 2-2 Schematic diagram of mechanism of fault water inrush 图 2-3 断层力学分析图 14 Figure 2-3 Fault mechanics analysis chart 图3-1 水压加载与控制系统 20 Figure 3-1 Hydraulic loading and Control System 图3-2 地垒实验模型及监测点分布图 21 Figure 3-2 Horst models and monitoring points distribution 图3-3 I 断层主裂隙两侧监测点横向距离增量趋势图 21 Figure 3-3 Incremental trend chart of lateral distance of monitoring points in the main fissure of I fault 图3-4 第二次来压时 I 断层尖端形态 22 Figure 3-4 I fault sophisticated when second to pressure 图3-5 J 断层主裂隙两侧监测点横向距离增量趋势图 22 Figure 3-5 Incremental trend chart of lateral distance of monitoring points in the main fissure of J fault 图3-6 裂隙贯穿底板 32 Figure 3-6 Cracks throughout the floor 图3-7 J 断层递进导升实验结果图 23 Figure 3-7 J fault progressive lead and rise experimental results chart 图3-8 地堑实验模型及监测点位置图 24 Figure 3-8 Graben experimental model and monitoring location map 图3-9 I 断层主裂隙两侧监测点横向距离增量趋势图 24 Figure 3-9 Incremental trend chart of lateral distance of monitoring points in the main fissure of I fault 图3-10 J 断层主裂隙两侧监测点横向距离增量趋势图 25 Figure 3-10 Incremental trend chart of lateral distance of monitoring points in the main fissure of J fault 图3-11 J 断层实验结果图 25 Figure 3-11 J fault experiment results 万方数据 IX 图3-12 无水压实验模型及监测点位置图 26 Figure 3-12 No hydraulic test model and monitoring point location map 图3-13 试验结果图 26 Figure 3-13 test results figure 图4-1 四面体图 29 Figure4-1 Tetrahedral chart 图4-2 反分析求参方法流程图 34 Figure4-2 Inverse Analysis Parameters uation flowchart 图 4-3 地垒组合形式数值模型 Fig 4-3 Numerical Horst combination mode 图 4-4 煤层开挖 10 米塑性区 Figure4-4 Plastic state of wall rock after coal excavated forward 10m 图4-5 煤层开挖 40 米塑性区 36 Figure 4-5 Plastic state of wall rock after coal excavated forward 40m 图4-6 煤层开挖 60 米塑性区 37 Figure 4-6 Plastic state of wall rock after coal excavated forward 60m 图4-7 煤层开挖 70 米塑性区 37 Figure 4-7 Plastic state of wall rock after coal excavated forward 70m 图4-8 煤层开挖 80 米塑性区 38 Figure 4-8 Plastic state of wall rock after coal excavated forward 80m 图4-9 煤层开挖 90 米塑性区 39 Figure 4-9 Plastic state of wall rock after coal excavated forward 90m 图4-10 煤层开挖 100 米塑性区 39 Figure 4-10 Plastic state of wall rock after coal excavated forward 10m 图4-11 地堑组合形式数值模型 40 Figure 4-11 The numerical model of graben combination 图4-12 煤层开挖 10 米塑性区 40 Figure 4-12 Plastic state of wall rock after coal excavated forward 10m 图4-13 煤层开挖 40 米塑性区 41 Figure 4-13 Plastic state of wall rock after coal excavated forward 40m 图4-14 煤层开挖 60 米塑性区 41 Figure 4-14 Plastic state of wall rock after coal excavated forward 60m 图4-15 煤层开挖 80 米塑性区 42 Figure 4-15 Plastic state of wall rock after coal excavated forward 80m 图4-16 煤层开挖 100 米塑性区 42 Figure 4-16 Plastic state of wall rock after coal excavated forward 100m 图4-17 煤层开挖 110 米塑性区 43 Figure 4-17 Plastic state of wall rock after coal excavated forward 110m 图4-18 无水压地垒组合实验模型 43 万方数据 X Figure 4-18 No pressure Horst combination experiment model 图4-19 煤层开挖 60 米塑性区 44 Figure 4-19 Plastic state of wall rock after coal excavated forward 60m 图4-20 煤层开挖 80 米塑性区 45 Figure 4-20 Plastic state of wall rock after coal excavated forward 80m 图4-21 煤层开挖 100 米塑性区 45 Figure 4-21 Plastic state of wall rock after coal excavated forward 100m 图5-1 图 5-1 煤层底板自然导升及其采动过程中的发展 47 Figure 5-1 the development of natural lead rise and its mining process in coal seam floor 图5-2 煤层底板递进导升突水机理示意图 48 Figure 5-2 Coal seam floor water inrush mechanism of progressive guide rise diagram 图5-3 5煤底板地层柱状图 51 Figure 5-3 Coal floor strata histogram 5 图5-4 回风巷底板视电阻率剖面图 52 Figure 5-4 Appa