连续采煤机块段式开采覆岩关键层破断规律与控制研究.pdf
国家重点基础研究发展计划973项目2015CB251600 国家自然科学基金项目51374197,50774078 煤炭资源与安全开采国家重点实验室自主课题项目SKLCRSM12X06 硕士学位论文 连续采煤机块段式开采连续采煤机块段式开采覆岩覆岩关键层破断规关键层破断规 律与控制研究律与控制研究 Research on Key Strata Breaking Laws by Continuous Mining s and Roof Control 作 者曹 洋 导 师曹胜根教授 中国矿业大学 二○一五年五月 万方数据 中图分类号 TD325 学校代码 10290 UDC 622 密 级 公开 中国矿业大学 硕士学位论文 连续采煤机块段式开采覆岩关键层破断 规律与控制研究 Research on Key Strata Breaking Laws by Continuous Mining s and Roof Control 作 者 曹 洋 导 师 曹胜根 申请学位 工学硕士 培养单位 矿业工程学院 学科专业 采矿工程 研究方向 矿山压力与岩层控制 答辩委员会主席 王旭锋 评 阅 人 方新秋、贺宏华 二○一五年五月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 论文审阅认定书论文审阅认定书 研究生 在规定的学习年限内, 按照研究生培养方案 的要求,完成了研究生课程的学习,成绩合格;在我的指导下完成本 学位论文,经审阅,论文中的观点、数据、表述和结构为我所认同, 论文撰写格式符合学校的相关规定, 同意将本论文作为学位申请论文 送专家评审。 导师签字 年 月 日 万方数据 致致 谢谢 本论文是在授业恩师曹胜根教授的悉心指导下完成的, 导师无论是在论文选 题、研究思路确定、论文修改,还是在整个研究过程都给予了悉心的指导。自步 入师门的那一刻起,导师做学的严谨、做人的淳朴、做事的认真无时无刻不在熏 陶着我们,这是我三年来从恩师身上得到的最宝贵的精神财富。母校也用她“勤 奋、求实、进取、奉献”的精神潜移默化地感染着我,值此论文完成之际,谨向 恩师及母校致以崇高的敬意和诚挚的感谢。 在三年的研究生生活中,令人怀恋的还有师兄弟之间真挚的感情,课题组之 间无私的帮助, 在此对师兄弟姜海军、 张蓓、 赵宏超、 程正刚、 咸宇超、 张厚江、 张云、王琛表示衷心的感谢,同时对张吉雄教授课题组表示感谢。在论文现场工 业试验时,得到了太原煤科院的周茂普研究员、江小军副研究员等的悉心帮助, 在此表示感谢。感谢矿业学院的殷实老师、潘晓龙老师在党员培养方面的支持和 帮助。 特别感谢张东升教授、曹树刚教授在做人做学方面给予我的教导。 感谢我的家人,是你们的支持与关爱让我度过了大学中又一段美好的时光。 由衷地感谢评阅论文的各位专家、教授,您们的批评指正是我进步的不竭动 力。最后,对所有默默奉献在矿业科学研究一线的学者致以深深的敬意。 万方数据 I 摘 要 基于色连煤矿 1 号矿井 2-2 上煤层边角煤回收的工程背景, 综合运用了现场 采样测试,理论计算与分析,数值模拟与分析,现场工业试验等研究方法,对连 续采煤机块段式开采残留煤柱稳定性、覆岩运移及关键层破断规律、顶板控制技 术进行了系统的研究,主要研究成果如下 (1)运用突变理论方法,建立了区段隔离煤柱的力学模型,并推导出其发 生突变失稳的力学条件为煤柱的弹性核区宽度占其总宽度的百分比低于 14 时,外界若有轻微扰动,煤柱将发生突变型失稳破坏;反之,煤柱发生的是逐步 破坏, 积聚的能量缓慢释放。 运用数值模拟和现场试验的方法对结果进行了验证, 结论与理论计算基本相符,揭示了区段隔离煤柱失稳机理研究的合理性。 (2)根据色连一号矿井 2-2 上煤层开采的地质条件,结合岩层柱状图及关 键层判别软件得出了 2-2 上煤层属于多层关键层顶板结构, 据此建立了多层关键 层破断的力学模型, 运用弹性薄板理论对关键层的初次断裂及周期断裂步距进行 了理论计算,并针对特定情况对理论计算值进行了修正,为块段式开采顶板岩层 控制提供了理论依据。 (3) 运用FLAC 3D数值模拟软件对2-2上煤层块段式开采过程进行计算建模, 通过监测模型开采过程中煤柱及关键层的应力、 位移和塑形区变化来分析了保护 煤柱稳定性与关键层破断的相关性、上覆岩层的运移及关键层的破断规律。得到 煤柱及关键层的变形破坏之间存在一定相关性,二者可视为一个“煤柱亚关键 层主关键层”的系统;亚关键层随着工作面的推进,发生弯曲下沉,在岩板中 部下边缘首先出现拉破坏区,随后岩板周围出现剪切破坏,中部拉破坏区最终贯 穿岩板,亚关键层在推进到 20m 左右发生初次破断,推进到 26m 左右发生第一次 周期破断, 此后大约 7m 左右有一次周期破断; 主关键层的破坏主要为剪切破坏, 在亚关键层发生第 3 次周期破断之前,主关键层发生初次破断,引起上覆岩层及 保护煤柱发生较大的变形和破坏。 (4)分析了留设保护煤柱及注浆充填技术在块段式开采顶板控制中所起的 作用, 通过数值模拟对注浆充填技术的机理和效果进行了分析研究。得到适合该 现场情况的区段隔离煤柱合理宽度为 1215m;注浆充填技术一方面可以对区段 隔离煤柱形成保护,降低其屈服区的发育程度,从而可以在开采过程中充分发挥 其对上覆岩层的支撑作用;另外一方面,可以有效控制上覆岩层,尤其是主、亚 关键层的弯曲下沉,同时也对开采前方待采煤房的偏帮起到一定抑制作用。 该论文有图 38 幅,表 5 个,参考文献 80 篇。 关键词关键词连续采煤机;块段式开采;关键层;保护煤柱;顶板控制 万方数据 II Abstract Based on corner coal recycled engineering background in 2-2 coal seam of Selian 1st Coal Mine, in site sampling tests, theoretical calculations and analysis, numerical simulation and analysis and field experient were undertaken to research the stability mechanism of coal pillars, overlying strata movement and key strata breaking laws and roof control technology. The major achievements are as follows 1 The mechanics model of residual coal pillars was established by catastrophe theory,and its mechanical instability changed bywhen elastic zone width of coal pillar is less than 14 , if slight disturbing from outside is occurred. We also verified the results with numerical simulation and field experient, revealing that instability mechanism of coal pillar to isolate sections is reasonable. 2 According to geological conditions in 2-2 coal seam of Selian 1st Coal Mine, combined with histogram of the coal petrography and key strata judgment software to find that multi-layers structure of key strata. Based on this we built the mechanical model to calculate the fracture length and weighting step of key strata with elastic plate theory, the calculation for special situations were revised by us. All of these provided a theoretical basis for roof control in continuous mining. 3 The 2-2 coal seam excavated process model was built by FLAC3D numerical simulation software, by monitoring stress, displacement and yield area changes of coal pillars and key strata, we could analyze relevance between coal pillar stability and key strata breaking, besides we still analyze key strata breaking laws of Block-Stage Mining process. In conclusion,coal pillars and key strata can be seen as a system of “coal pillar -master key strata- secondary key strata “, key strata with the face forward bent down in the middle of the lower edge of slab pull damage zone appears first, followed by shear failure slab around the central area eventually pulled through the slab destruction, advancing to the first cycle occurred about 26m broken, then there is a cycle by about 7m breaking. 4 Analyze the role played by protective coal pillars and sand filling to the goaf, through numerical simulation to study mechanisms and effects of sand filling to the goaf. In conclusion, the scene for the isolation section of pillar width of 12 15m; on the one hand sand filling to the goaf can protect coal pillars to reduce the development of the yield zones, which can give full play to its mining process the supporting role of the overburden; on the other hand, it can effectively control the overburden, especially curved main sink, sub critical layers. 万方数据 III Key words continuous miners; block mining ; key strata; coal pillars; roof control 万方数据 IV 目目 录录 摘摘 要要 ........................................................................................................................... I 目目 录录 ........................................................................................................................ IV 图清单图清单 ..................................................................................................................... VIII 表清单表清单 .......................................................................................................................... X 变量注释表变量注释表 ................................................................................................................ XI 1 绪绪 论论 ....................................................................................................................... 1 1.1 选题背景及研究意义 .............................................. 1 1.2 国内外研究现状综述 .............................................. 3 1.3 研究内容 ........................................................ 7 1.4 研究方法及技术路线 .............................................. 8 2 块段式开采地质概况块段式开采地质概况 ............................................................................................... 9 2.1 煤层地质特征 .................................................... 9 2.2 连续采煤机块段式开采工艺 ....................................... 11 2.3 煤岩力学性能测试 ............................................... 13 2.4 本章小结 ....................................................... 14 3 块段式开采残留煤柱稳定性研究块段式开采残留煤柱稳定性研究 ......................................................................... 15 3.1 基于逐步破坏理论的煤柱稳定性分析 ............................... 15 3.2 基于尖点突变模型的煤柱稳定性分析 ............................... 17 3.3 区段煤柱稳定性数值模拟分析 ..................................... 20 3.4 现场工程实践 ................................................... 24 3.5 本章小结 ....................................................... 26 4 块段式开采覆岩运移及关键层破断理论分块段式开采覆岩运移及关键层破断理论分析析 ..................................................... 27 4.1 关键层所处位置判定 ............................................. 27 4.2 关键层破断力学模型 ............................................. 28 4.3 关键层断裂步距 ................................................. 28 4.4 工程实例计算 ................................................... 32 4.5 本章小结 ....................................................... 33 5 块段式开采覆岩关键层破断规律数值模拟研究块段式开采覆岩关键层破断规律数值模拟研究 .................................................. 34 5.1 保护煤柱稳定性与关键层破断相关性数值模拟研究 ................... 34 万方数据 V 5.2 块段式开采关键层破断运移规律数值模拟研究 ....................... 53 5.3 本章小结 ....................................................... 58 6 块段式开采顶板控制技术块段式开采顶板控制技术 ...................................................................................... 59 6.1 留设保护煤柱与注浆充填采空区技术运用 ........................... 59 6.2 深孔爆破卸压技术运用 ........................................... 62 6.3 三角区控顶技术运用 ............................................. 64 6.4 加强矿山压力的监测预报 ......................................... 65 6.5 本章小结 ....................................................... 65 7 7 结论结论 .......................................................................................................................... 67 7.17.1 主要结论主要结论 ....................................................... 67 参考文献参考文献 ..................................................................................................................... 69 作者简历作者简历 ..................................................................................................................... 73 学位论文原创性声明学位论文原创性声明 ................................................................................................. 74 学位论文数据集学位论文数据集 ......................................................................................................... 75 万方数据 VI Contents Abstract.II Contents..IV List of Figures....VIII List of Tables...X List of Variables...XI 1 Introduction...1 1.1 Background and significance...1 1.2 Review of the status at home and abroad.....3 1.3 Research Content..7 1.4 Research Approaches and Technique Course.8 2 Block-stage mining regional engineering geology...9 2.1 Geological conditions of mine field9 2.2 Continuous miner block stage mining technology...11 2.3 Mechanics test of rock and coal13 2.4 Summary14 3 Research for stability mechanism of the block-stage mining ...15 3.1 The analysis of coal pillar stability based on gradual damage theory 15 3.2 The analysis of coal pillar stability based on mutation theory17 3.3 Section coal pillar stability by numerical calculating20 3.4 The project practice on site.24 3.5 Summary26 4 Analysis for overlying strata movement and key strata breaking of block-stage mining process27 4.1 Key strata position judgment..27 4.2 Mechanical model of key strata breaking28 4.3 Caculation of the key strata fracture length28 4.4 Caculation of an engineering example32 4.5 Summary33 万方数据 VII 5 Numerical analysis for key strata breaking laws of block-stage mining process..34 5.1 Numerical analysis of relevance between coal pillar stability and key strata breaking34 5.2 Numerical simulation research for key strata breaking laws of block-stage mining process53 5.3 Summary58 6 Roof control technology of block-stage mining......59 6.1 Technology of coal pillar and sand filling to the goaf59 6.2 Technology of deep hole pre-split blasting62 6.3 Technology of triangle area roof control..64 6.4 Strength ground pressure monitoring65 6.5 Summary65 7 Conclusions and innovation ...67 7.1 Conclusions67 References69 Author’s Resume73 Declaration of Thesis Originality74 Thesis/Dissertation Data Collection75 万方数据 VIII 图清单图清单 图序号图序号 图名称图名称 页码页码 图 1-1 连续采煤机房柱式开采示意图 3 Figure 1-1 Continuous miner room and pillar mining 3 图 1-2 传统房柱式采煤工作面 4 Figure 1-2 Traditional room and pillar mining 4 图 1-3 单翼连续采煤机机械化采煤法 5 Figure 1-3 Continuous miner mechanized oneway mining 5 图 1-4 连续采煤机双翼煤柱回收法 5 Figure 1-4 Continuous miner wings mining 5 图 1-5 采区周围最大垂直压力和压力拱的关系图 7 Figure 1-5 The largest vertical pressure and pressure arch diagram around mining area 7 图 2-1 色连一号矿井交通位置图 9 Figure 2-1 Traffic location in Selian Coal Mine 9 图 2-2 色连一号矿井煤系地层柱状图 10 Figure 2-2 Histogram of the coal petrography in Selian Coal Mine 10 图 2-3 连续采煤机块段式开采工作面布置图 12 Figure 2-3 Block-stage continuous miner mining face layout 12 图 2-4 煤房回采工艺布置图 13 Figure 2-4 Schematic of coal pillar recovery process 13 图 2-5 行走支架移动方式示意图 13 Figure 2-5 Schematic walking bracket moves 13 图 3-1 区段煤柱承载示意图 16 Figure 3-1 Section coal pillar loads diagram 16 图 3-2 平面曲面和控制变量平面 20 Figure 3-2 Equilibrium curved surface and control variable plane 20 图 3-3 区段煤柱及采场塑性区对比 21 Figure 3-3 Contrast of plastic zone in section pillars and stopes 21 图 3-4 区段煤柱垂直应力对比 22 Figure 3-4 Contrast of stress distribution in section pillars 22 图 3-5 采场顶板沉降量对比 22 Figure 3-5 Surface displacement contrast in coal stopes 22 图 3-6 现场测点布置图 25 Figure 3-6 Measuring points of mining face 25 图 3-7 煤柱应力时间变化曲线图 25 Figure 3-7 The pressure-time chart graph of coal pillars 25 图 3-8 钻孔 8 孔壁破裂特征 26 万方数据 IX Figure 3-8 Characterics upon coal broken by optical borehole camera 26 图 4-1 关键层破断力学模型 28 Figure 4-1 Mechanical model of key strata breaking 28 图 4-2 关键层极限状态(四边固支) 29 Figure 4-2 Limit condition of key strata 29 图 4-3 关键层极限状态(三边固支一边受均布载荷) 31 Figure 4-3 Limit condition of key strata 31 图 4-4 主、亚关键层来压步距图 33 Figure 4-4 Weighting step of key strata and inferior key strata 33 图 5-1 Morh-Coulomb 塑形模型屈服准则 37 Figure 5-1 Yield criterion of the Mohr-Coulomb plastic model 37 图 5-2 数值计算模型 37 Figure 5-2 Numerical calculation model 37 图 5-3 模型开挖 38 Figure 5-3 The model of excavation 38 图 5-4 不同开采阶段煤柱中垂直应力分布 43 Figure 5-4 Vertical stress distribution with various excavation stage 43 图 5-5 垂直位移变化曲线 43 Figure 5-5 The curve of overlying movement 43 图 5-6 不同开采阶段保护煤柱破坏情况 46 Figure 5-6 The pillar damage state with various excavation stage 46 图 5-7 区段一采完第 1 条煤房后 48 Figure 5-7 After first coal pillars excavated in section 1 48 图 5-8 区段一采完第 2 条煤房后 50 Figure 5-8 After second coal pillars excavated in section 1 50 图 5-9 区段二采完第 1 条煤房后 53 Figure 5-9 After first coal pillars excavated in section 2 53 图 5-10 不同开采阶段关键层中垂直应力分布 57 Figure 5-10 Vertical stress distribution in key strata with various excavation stage 57 图 5-11 不同推进距离时关键层下沉曲