超高水材料袋式充填开采覆岩活动规律与控制研究.pdf
江苏省高校优势学科建设工程资助项目(PAPD) 博士学位论文 超高水材料袋式充填开采覆岩活动规律 与控制研究 Research on The Overlying Strata Movement Law of Super-high-water Material Bag-type Filling Mining and Its Control 作 者贾凯军 导 师冯光明 教授 中国矿业大学 二〇一五年五月 中图分类号 TD821 学校代码 10290 1 UDC 622 密 级 公开 1 中国矿业大学 博士学位论文 超高水材料袋式充填开采覆岩活动规律 与控制研究 Research on The Overlying Strata Movement Law of Super-high-water Material Bag-type Filling Mining and Its Control 作 者 贾凯军 导 师 冯光明 教授 1 申请学位 工学博士学位 培养单位 矿业工程学院 1 学科专业 采矿工程 研究方向 绿色开采 1 答辩委员会主席 张农 评 阅 人 1 二○一五年五月 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰写的 学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位论文 的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电子版,可 以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和科研目的,学 校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、 图书馆等场所或在校园 网上供校内师生阅读、浏览。另外,根据有关法规,同意中国国家图书馆保存研究生 学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 论文审阅认定书论文审阅认定书 研究生 贾凯军 在规定的学习年限内,按照研究生培养方案的要求, 完成了研究生课程的学习,成绩合格;在我的指导下完成本学位论文,经 审阅,论文中的观点、数据、表述和结构为我所认同,论文撰写格式符 合学校的相关规定,同意将本论文作为学位申请论文送专家评审。 导师签字 年 月 日 致致 谢谢 本论文是在导师冯光明教授的悉心指导和帮助下完成的。在论文的选题、研究、 实践和撰写过程中,冯老师倾注了大量的心血,给予了我严肃、认真的指导和帮助。 师从数载,收获颇丰,感触亦深,在短暂的数年学习过程中,学生深切感受到导师渊 博的专业知识、活跃的学术思想、严谨的治学态度、求实的工作作风、忘我的奉献精 神及谦和的长者风范,学生所获这些宝贵财富必将使学生受益终身,学生将永远铭记 和珍视之。值此论文完成之际,谨向恩师所给予的生活上的关照、学业上的指导及为 人上的典范深表感激。 在论文的选题和撰写过程中,特别感谢李乃梁老师、任海兵老师在论文选题及写 作期间给予的大力支持和无私帮助,感谢丁玉老师、谢文兵老师在论文撰写、科研及 学习中的帮助;感谢张少华高工、赵海云高工、尚宝宝硕士、郭河硕士在相似材料模 拟实验方面给予的支持和帮助;感谢张兆威硕士、何孝玉硕士、潘仕洪硕士、尹超宇 学士在相似材料模拟实验及论文撰写方面给予的悉心帮助; 同时也要感谢其他师兄弟 们的帮助和支持。 感谢永煤集团孟宪义部长及旗下城郊煤矿曾朝臣副矿长、牛建春总工程师、殷术 明工程师等各位领导和工作人员在论文现场调研和应用研究中给予的支持和帮助; 感 谢徐州万方矿山科技有限公司高天明高工和山东绿源特种材料有限公司王誉钦总经 理、段元贵副总经理在超高水材料供应及力学性能测试方面的帮助;感谢郑州华威水 工机电工程有限公司荣金慧总经理、曹建峰副总经理、李锋副总经理在超高水材料浆 液制备及输送的机械化、自动化方面以及机械、电工等方面的指导和帮助。 感谢我的父母亲、弟弟、妹妹和各位亲戚,感谢你们在我二十多年的求学生涯中 给予的无私关怀和支持。 几年的研究生生活,我结识了不少优秀的教师和矿业方面的专家,并得到了他们 真诚的帮助,在此向他们表示衷心的感谢,同时也要感谢中国矿业大学矿业工程学院 各位领导和老师的谆谆教导。 此外, 在论文的撰写过程中, 参阅了大量的论文和著作, 在此对这些国内外专家、 学者及前辈致以最崇高的敬意 感谢在百忙中抽出时间对本论文进行评审和答辩的各位专家。 感谢所有关心、鼓励和帮助过我的同学和朋友们。 I 摘摘 要要 超高水材料袋式充填开采技术是超高水材料矿山充填开采技术的一种基本技术, 因其具有适用性强、充填效果直观、不受工作面涌水影响等优点,得到了许多开采中 厚及厚煤层煤炭企业的青睐。 但其充填开采技术参数及工艺设计上仍缺乏足够的理论 基础,极大地限制了该技术的发展。本文以城郊矿充填试验面的地质条件为例,综合 运用理论分析、数值模拟、实验研究等手段,对超高水材料袋式充填开采覆岩活动规 律与控制问题进行了全面系统的研究, 并将研究成果用于指导城郊煤矿超高水材料袋 式充填开采技术参数和工艺的优化设计。主要取得如下成果和创新点 (1)运用相似材料模拟实验和数值模拟手段,研究了超高水材料袋式充填开采 的覆岩活动规律。研究表明超高水材料袋式充填开采情况下,充填体对采场围岩活 动起到显著的控制作用, 采空区上覆岩层整体上一直保持着连续性, 不会出现垮落带, 仅存在弯曲下沉带和微小的裂隙带,上覆岩层活动表现为平缓的弯曲下沉过程。 (2)分析了超高水材料袋式充填开采条件下充填体和直接顶的变形特征,给出 了直接顶发生破断的条件,提出了采场支护设计思路,认为在支架后顶梁的设计过程 中,需要考虑充填前顶板下沉量与充填体欠接顶量的博弈关系。 (3)提出了超高水材料袋式充填体存在垮塌失稳、滑移失稳和倾倒失稳3种失稳 形式,建立力学模型分析了各种失稳形式的充填体失稳机理,研发出了充填体稳定性 控制方法, 并从采高和工作面俯斜角两个方面分析了超高水材料袋式充填开采技术的 适用性。 (4)将研究成果用于城郊煤矿超高水材料袋式充填开采关键技术参数及工艺设 计过程中,取得了良好的应用效果。 该论文有图 63 幅,表 11 个,参考文献 186 篇。 关键词关键词超高水材料;袋式充填开采;覆岩活动规律;充填体;控制 II III Abstract Super-high-water material bag-type filling mining technology is one of the super-high-water material filling technology, which get the favor of many coal enterprises who mine medium-thick and thick coal seam due to the advantages such as extensive applicability, intuitive filling effects and impregnability of working face water gushing. However, the development of this technology did a lot of restrictions for lacking of enough theoretical foundation on technical parameters and crafts design process. Based on the geological conditions of the filling mining test surface in Chengjiao coal mine as an example, the comprehensive and systematic research on the overlying strata movement law of super-high-water material bag-type filling mining and its control was conducted in this paper, and the research results were used to guide the optimal design of super-high-water material bag-type filling mining technology parameters and process in Chengjiao coal mine. The main results and innovative points are as follows 1 Through researching on the overlying strata movement law of super-high-water material bag-type filling mining by using similar simulation experiment and numerical simulation, the results show that In case of super-high-water material bag-type filling mining, the control effect of filling body acting on stope wall rock becomes more obviously, the whole overburden above the mined-out area has maintained continuity and without the caving zone occurred, only a few fractured zone and bending zone existed and the overburden shows a gradual sinking bending process. 2 Deation mechanism of the filling body and the immediate roof in the condition of super-high-water material bag-type filling mining was analyzed, the breaking condition of immediate roof was given, and some ideas on stope support design was put forward. There must be an ample consideration on game relations between roof subsidence before filing goaf and the distance from roof to support beam during the design process of the support rear top beam. 3 Goaf bag-type filling body losing stability manifests three kinds of s was put forward, they are collapse, slippage and turnover. Filling body mechanical model was built, the instability conditions of filling body for each was analyzed and calculated, and the technology to protect the filling body from losing stability was developed. Besides, considering mining height and down-dip angle of working face, IV the applicability of super-high-water material bag-type filling mining technology was demonstrated. 4 Great effect had been achieved after the research findings used for the key technical parameters and crafts design process of super-high-water material bag-type filling mining in Chengjiao coal mine. This paper has 63 figures, 11 tables and 186 references. Keywords super-high-water material; bag-type filling mining; overlying strata movement law; filling body; control. V Extended Abstract Based on the geological conditions of the filling mining test surface in Chengjiao coal mine as an example, the comprehensive and systematic research on the overlying strata movement law and its control of super-high-water material bag-type filling mining was conducted in this paper, and the research results were used to guide the optimal design of super-high-water material bag-type filling mining technology parameters and process in Chengjiao coal mine. Through the analysis and study in this paper, the main results and innovative points are as follows 1 The results of similar material simulation experiment show that In case of caving mining, the overburden above the mined-out area appeared caving zone, fractured zone and bending zone in a sequence. However, in case of super-high-water material bag-type filling mining, the whole overburden above the mined-out area has maintained continuity and without the caving zone occurred, only a few fractured zone and bending zone existed. Compared with caving mining, overlying strata activity are relatively flat from beginning to end, shows a gradual sinking bending process under the condition of filling mining. 2 Numerical simulation research on the overlying strata movement law of stope under the condition of different goaf filling rate shows that in case of filling mining, the stress concentration phenomenon still rock stratum within the scope of the coal wall support area, the lower stress area exists in near the coal wall both sides of goaf. With the increase of goaf filling rate, the range of stress concentration area and stress concentration degree is more and more small, and the activity level of the overlying strata gradually reduced. When the filling rate is above 85, the immediate roof will not break, the overburden shows a gradual sinking bending process. 3 As the immediate roof sinking, it contacts with the filling body, and it rts greater pressure to the filling body as the working face moving forward. Besides, the deation of filling body occurs under this pressure, but its deation will not increase when it reaches a certain degree. Meanwhile, stress point of the immediate roof in the rear will gradually move forward from the rear of the coal wall to the top of filling body. Therefore, the existence of the filling body is equivalent to rt yieldable support to the immediate roof in a timely manner. Under the condition of super-high-water material bag-type filling mining, when the deation of filling VI body comes to the final value, the span between the contact point of filling body and roof and the rear of the coal wall is still less than initial caving interval of the immediate roof of coal working face in most of the mines, so the immediate roof breaking in general will not happen. 4 Under the action of roof pressure, the total volume of super-high-water material bag-type filling body didn’t change, but its height will be reduced to a certain extent, its width will increase slightly, and a part of the top of filling body where don’t contact with roof will rise. 5 Compared with caving mining, the influence range of lead abutment pressure of filling working face was significantly reduced, the advanced support range of two roadway can be shortened, and the support strength can also be appropriate to reduce, but the permanent support of gateway can be designed according to the traditional roadway support design . The hydraulic support design way of super-high-water material bag-type filling mining includes the supporting strength design, the rear top beam design and other associated components design, but there must be an ample consideration on game relations between roof subsidence before filing goaf and the distance from roof to support beam during the design process of the rear top beam. 6 Bag-type filling body in goaf losing stability manifests three kinds of s, they are collapse, slippage and turnover. For all kinds of instability s, reducing the down-dip angle can have effective prevention effect. Besides, decreasing the height of the filling body, improving its early strength and extending the time of temporary support to it is useful for avoiding it from collapse instability, and increasing the width of the filling body and decreasing its height can be used to protect it from turnover instability. In addition, the filling body also can be protected effectively from slippage and turnover instability through appropriately increasing the face width and removing the supporting equipment in front of the filling body until it contacts with the roof. 7 Super-high-water material bag-type backfill mining technology applies to the condition that down-dip angle is less than 25 and the height of filling body is less than 5 m. If down-dip angle was above 15 , it should be considered to take measures to prevent filling body from slippage and turnover instability; if the mining height is 2.6 4.6 m and down-dip angle is bigger, it should be considered to increase the filling step to prevent filling body from turnover instability; if the mining height is VII above 4.6 m, it should be considered to take measures to prevent filling body from turnover instability and collapse instability. 8 When using super-high-water material bag-type filling mining technology, the caving zone does not exist, there is only fractured zone and bending zone, the activity space of overlying strata is larger than caving mining under the equivalent mining height. We can take some measures to control and slow down the surface subsidence, such as timely filling to reduce the roof exposure time, optimizing the filling process to improve roof-contacted effect and reduced the compression of super-high-water material bag-type filling body. 9 After the research findings used for the key technical parameters and crafts design process of super-high-water material bag-type filling mining in Chengjiao coal mine, through observing the solidification of filling body, roof-contacted effect, mining pressure and surface subsidence, we can find that filling effect was good, remarkable economic and society benefits have been achieved. This technology provides effective solution to coal mining under building, railway and water for Chengjiao coal mine and other coal mines in Yongcheng Coal Mine Group Company, and it also played a very good reference and guidance for other coal mines with similar geological conditions. This paper has 63 figures, 11 tables and 186 references. Keywords super-high-water material; bag-type filling mining; overlying strata movement law; filling body; control. VIII IX 目目 录录 摘摘 要要............................................................................................................................ I 目目 录录......................................................................................................................... IX 图清单图清单...................................................................................................................... XIII 表清单表清单..................................................................................................................... XVII 变量注释表变量注释表 .......................................................................................................... XVIII 1 1 绪论绪论............................................................................................................................ 1 1.1 问题的提出及研究意义 .......................................................................................... 1 1.2 国内外研究现状 ..................................................................................................... 2 1.3 超高水材料袋式充填开采存在的问题及技术难点 ........................................... 13 1.4 主要研究内容与方法 ........................................................................................... 14 2 超高水材料袋式充填开采覆岩活动规律模拟研究超高水材料袋式充填开采覆岩活动规律模拟研究 ............................................. 15 2.1 超高水材料袋式充填方法简介 ........................................................................... 15 2.2 袋式充填开采覆岩活动规律相似材料模拟实验研究 ....................................... 17 2.3 袋式充填开采覆岩活动规律数值模拟研究 ....................................................... 34 2.4 本章小结 ............................................................................................................... 39 3 3 超高水材料袋式充填开采覆岩控制机理超高水材料袋式充填开采覆岩控制机理 ............................................................. 41 3.1 直接顶变形特征 ................................................................................................... 41 3.2 袋式充填开采覆岩结构力学模型及求解 ........................................................... 45 3.3 充填体变形特征 ................................................................................................... 51 3.4 采场支护设计思路 ............................................................................................... 52 3.5 本章小结 ..................................