张家峁煤矿15201综采工作面地表移动规律研究.pdf
论文题目 张家峁煤矿 15201 综采工作面地表移动规律研究 工程领域 建筑与土木工程 硕 士 生 郭佐宁 (签名) 指导老师 谷拴成 (校内) (签名) 叶根飞 (校外) (签名) 摘 要 随着工业化进程的加快,我国对能源的需求也越来越大,其中煤矿资源又是当今能 源的主要来源。煤炭等矿物一旦被采出,会造成地表变形开裂和建(构)筑物破坏,甚 至造成水土流失,诱发滑坡和泥石流等地质灾害,极大地影响人们正常的生产生活和生 命财产安全,因此,深入开展地下开采地表移动规律方面的研究意义重大。鉴于此,本 文综合运用理论分析、现场监测和数值模拟等研究方法,以张家峁煤矿 15201 综采工作 面为工程依托,综合运用理论分析、数值模拟和现场实测等方法,在建立地表移动观测 站和工作面开采期间近 15 个月的移动观测和地表损坏勘测结果分析的基础上,得出地 表移动角值参数和概率积分预计参数,并采用数值模拟方法对地表移动规律进行了研 究,取得了具有一定价值的研究成果,主要成果如下 1根据张家峁煤矿 15201 综采工作面的开采环境,对地表移动观测系统进行了设 计。在现场监测数据分析的基础上,给出了张家峁煤矿 5-2煤层综合开采边界角、基岩 角和土层角、充分采动角以及地表移动启动步距等开采地表岩层移动相关参数,并得知 观测区各测点的地表移动都经历了启动阶段、活跃阶段、衰退阶段,但各测点 3 个阶段 的持续时间都有所不同。 2通过地表移动观测数据和地表沉陷的破坏特征, 分析了张家峁矿区特有的厚黄土 层、薄基岩、浅埋深条件下的开采沉陷规律,结果如下观测区地表形成了平行于顺槽 靠采空区边界外侧和切眼附近的永久裂缝,形成了随工作面的推进超前于工作面的闭合 裂缝;地表移动剧烈且迅速;地表移动破坏较大,尤其在沟壑或沟壑边缘的地表变形破 坏更为严重; 地表裂缝的产生在一定程度上抑制了地表变形的范围, 增大了地表移动角; 在山区地表厚黄土层覆盖条件下,在地表沉陷过程中会出现台阶式断裂破坏,导致黄土 层的边界角减小,移动角增大,与其他地层中的开采沉陷地表移动规律不同。 3运用概率积分法对半无限开采时地表移动盆地主断面上的移动进行了变形预计, 给出了适合概率积分法的预计参数。同时,通过理论预计公式对实测的地表下沉曲线进 行了拟合,拟合结果表明根据实测的数据确定的概率积分法参数满足矿区地质采矿条 万方数据 件下要求,预计结果与实测结果吻合较好;运用大型有限元软件 ANSYS 对开采引起的 地表沉降进行了数值模拟,进一步分析了地表移动规律及特征,模拟结果与实测结果规 律一致。 关 键 词综采工作面;地表移动;现场监测;开采沉陷;数值模拟 研究类型应用研究 万方数据 Subject Research on Surface Movement Law of 15201 Fully Mechanized Working Face of Zhang Jia-mao Coal Mine Specialty Architecture and Civil Engineering Name Guo Zuo-ning Signature Instructor Gu Shuan-cheng Signature Ye Gen-fei Signature ABSTRACT With the speeding up of industrialization, the demand for energy in our country is becoming more and more big, the coal resource is the main source of energy today. Coal and other minerals, once produced, can cause the surface deation and cracking and built, damage, or even cause soil erosion, cause the geological disasters such as landslide and debris flow, greatly affect peoples normal production and life, and life and property security, therefore, carry out underground mining surface movement law research is of great significance. In view of this, in this paper, the integrated use of theoretical analysis, field monitoring and numerical simulation and other research s, with the changs Mao based on the engineering support of 15201 fully mechanized working face of coal mine integrated use of theoretical analysis, numerical simulation and spot observation and other s, the establishment of surface movement observation station with nearly 15 months during the period of working face mining mobile observation and surface damage based on the analysis of the survey results, it is concluded that surface movement Angle value parameters and probability integral are expected, and the numerical simulation is adopted to study the surface movement rule, obtained has certain value of research results, the main results were as follows 1According to the mining environment of 15201 fully mechanized working face of Zhang Jiamao coal mine, the surface movement observation is designed. On the basis of field monitoring data analysis, the comprehensive coal mining boundary Angle of Zhang Jiamao 5-2 coal mine is given, Angle of bedrock and soil Angle, fully mining step Angle and surface movement start from the mining surface strata movement related parameters, such as, and learned that every station of surface movement observation area has experienced starting stage, active phase, decline phase, but the duration of each measuring point three stages is 万方数据 different. 2Through the surface movement observation data and surface subsidence damage characteristics, analyzed the changs Mao mining area characteristic of thick soil lager, thin bedrock, shallow buried depth under the condition of mining subsidence laws the observation area surface ed parallel to the gateway of mined-out area near the border of the lateral and cut by permanent cracks, ed with the working face advancing ahead of working face closing cracks; Intense and surface movement movement period is shorter; Larger surface movement damage, especially in the ravines or ravines range is more serious on the edge of the surface deation and destruction; The loess surface cracks, to a certain extent, inhibit the scope of the surface deation, increases the surface movement Angle; Surface coverage under the condition of thick soil lager is in the mountains and will appear in the surface subsidence terraced fracture damage, leading to the boundary of the north Angle decreases, and the mobile Angle increases, and the general law of mining under the condition of surface movement are different. 3By using probability integral in half infinite when mining surface subsidence basin is moving the deation on the main section, suitable for expected parameters of probability integral is presented. At the same time, through the theoretical ula is expected on the measured surface subsidence curve fitting, the fitting results show that according to the measured data to determine the parameters of probability integral satisfies the requirement of mine geological and mining conditions, the expected results are in good agreement with the test result; Using the large finite element software ANSYS to ground surface subsidence caused by mining is simulated and further analysis of the characteristics, the surface movement rule and law of simulated results and measured results are consistent. Key words the fully mechanized working face; surface movement; field monitoring; mining subsidence; numerical simulation Thesis Application research 万方数据 目 录 I 目 录 1 绪 论 ...................................................................................................................................... 1 1.1 研究背景及意义 .......................................................................................................... 1 1.2 国内外研究现状及发展趋势 ...................................................................................... 2 1.2.1 地表移动变形的国内外研究现状 .................................................................... 2 1.2.2 地表移动研究存在的问题及发展趋势 ............................................................ 5 1.3 主要研究内容及技术路线 .......................................................................................... 6 1.3.1 主要研究内容 .................................................................................................... 6 1.3.2 技术路线 ............................................................................................................ 6 2 地表移动预计方法研究 ...................................................................................................... 8 2.1 常见开采沉陷预计方法 .............................................................................................. 8 2.1.1 概率积分法 ........................................................................................................ 8 2.1.2 典型曲线法 ........................................................................................................ 9 2.1.3 剖面函数法 ...................................................................................................... 10 2.1.4 相似材料模拟方法 .......................................................................................... 10 2.1.5 数值计算方法 .................................................................................................. 11 2.2 概率积分法预计理论 ................................................................................................ 11 2.2.1 基本原理 .......................................................................................................... 11 2.2.2 半无限开采时地表移动盆地主断面上的移动变形预计 .............................. 11 2.3 地表移动预计参数的确定 ........................................................................................ 12 2.4 概率积分理论拟合度分析 ........................................................................................ 13 2.5 本章小结 .................................................................................................................... 13 3 15201 工作面地表移动监测设计 ........................................................................................ 14 3.1 工程概况 .................................................................................................................... 14 3.2 观测区的地形地貌及采矿条件 ................................................................................ 14 3.2.1 观测区地形地貌 .............................................................................................. 14 3.2.2 工作面采矿情况 .............................................................................................. 15 3.2.3 开采煤层覆岩特性 .......................................................................................... 15 3.3 地表移动观测站的布设 ............................................................................................ 16 3.3.1 现场监测的目的 .............................................................................................. 16 万方数据 目 录 II 3.3.2 地表移动影响因素 .......................................................................................... 16 3.3.3 地表观测站的布设 .......................................................................................... 16 3.3.4 地表观测线的布设 .......................................................................................... 20 3.4 地表移动观测实施 .................................................................................................... 22 3.4.1 控制点坐标及高程的确定 .............................................................................. 22 3.4.2 连接观测 .......................................................................................................... 22 3.4.3 全面观测 .......................................................................................................... 22 3.4.4 常规观测 .......................................................................................................... 23 3.4.5 观测点遗失处理 .............................................................................................. 24 3.5 本章小结 .................................................................................................................... 24 4 15201 工作面地表移动现场监测分析 ............................................................................. 25 4.1 观测成果的计算 ........................................................................................................ 25 4.1.1 内业整理计算 .................................................................................................. 25 4.1.2 地表移动和变形分析 ...................................................................................... 26 4.2 地表移动的角量分析 ................................................................................................ 37 4.2.1 起动距的确定 .................................................................................................. 37 4.2.2 超前影响角的确定 .......................................................................................... 38 4.2.3 最大下沉滞后角的确定 .................................................................................. 38 4.3 地表裂缝发育特征及原因分析 ................................................................................ 38 4.3.1 地表裂缝特征 .................................................................................................. 38 4.3.2 地表裂缝的成因 .............................................................................................. 43 4.3.3 采动裂缝对地表移动变形的影响 .................................................................. 46 4.4 地表移动稳定后的角值确定 .................................................................................... 48 4.4.1 边界角的确定 .................................................................................................. 48 4.4.2 移动角的确定 .................................................................................................. 49 4.4.3 裂缝角的确定 .................................................................................................. 50 4.4.4 最大下沉角和充分采动角的确定 .................................................................. 51 4.5 采动过程中地表移动分析 ........................................................................................ 52 4.5.1 地表点的下沉速度及下沉曲线 ...................................................................... 52 4.5.2 观测点的下沉特征分析 .................................................................................. 54 4.6 地表最大沉降量 ........................................................................................................ 55 4.7 地表移动的影响因素 ................................................................................................ 55 万方数据 目 录 III 4.8 地表移动预计值与实测变形对比分析 .................................................................... 56 4.9 本章小结 .................................................................................................................... 57 5 15201 工作面地表移动数值模拟分析 ............................................................................. 59 5.1 地表变形的数值模拟分析 ........................................................................................ 59 5.1.1 ANSYS 软件简介 ............................................................................................. 59 5.1.2 模型的建立 ...................................................................................................... 60 5.1.3 模型边界条件的设定 ...................................................................................... 61 5.1.4 模型相关参数的确定 ...................................................................................... 61 5.2 15201 工作面数值模拟结果分析 .............................................................................. 62 5.2.1 位移场分析 ...................................................................................................... 62 5.2.2 应力场分析 ...................................................................................................... 65 5.3 本章小结 .................................................................................................................... 68 6 结论与展望 .......................................................................................................................... 70 6.1 结论 ............................................................................................................................ 70 6.2 展望 ............................................................................................................................ 71 致 谢 .................................................................................................................................... 72 参考文献 .................................................................................................................................. 73 万方数据 1 绪 论 1 1 绪 论 1.1 研究背景及意义 煤炭等矿产资源被采出之后,采空区范围内上覆岩体的原有应力平衡被打破并产 生重新分布,进而达到一种新的平衡状态。煤炭在开采过程中,致使岩层和地表沉 陷,该现象被称为“开采沉陷”[1]。 岩体是一种比较复杂的岩层介质,它是由不同岩性的岩层构成,同时因为地质的 作用致使岩体内部产生了大量的结构面。岩体在不同方法开采中,受到不同程度的影 响,开采所引起的沉陷在时间和空间上是一个比较复杂的过程[2]。在时间上,在不同的 时间段上,开采沉陷的形式与大小是不同的,开采沉陷表现为“动态的”;随时间的 不断推移,其形式与大小也逐渐趋于稳定,最终表现为“静态的”或“最终的”[3-6]。 在空间上,如果开采区域较小,开采深度较大,那么开采沉陷的影响范围仅仅局 限开采区域内的岩体;如果开采区域大,开采深度较小,那么开采沉陷的影响范围就 会从岩体内部延伸到地表,从而引起地表沉陷。由于人类的生产和