姿态数据驱动的液压支架运动状态监测技术研究.pdf
工程硕士专业学位论文 姿态数据驱动的液压支架运动状态 监测技术研究 Research on Motion State Monitoring Technology of Hydraulic Support Driven by Posture Data 作 者孙君令 导 师谭 超 副教授 中国矿业大学 二○一九年四月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰写的学 位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位论文的 部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电子版,可以使 用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和科研目的,学校档案 馆和图书馆可以将公开的学位论文作为资料在档案馆、 图书馆等场所或在校园网上供校 内师生阅读、浏览。另外,根据有关法规,同意中国国家图书馆保存研究生学位论文。 保密的学位论文在解密后适用本授权书。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TH137 学校代码 10290 UDC 621 密 级 公开 中国矿业大学 硕士学位论文 姿态数据驱动的液压支架运动状态 监测技术研究 Research on Motion State Monitoring Technology of Hydraulic Support Driven by Posture Data se 作 者 孙君令 导 师 谭超 副教授 申请学位 工学硕士 培养单位 机电工程学院 学科专业 机械工程 研究方向 煤矿机电装备自动化 答辩委员会主席 评 阅 人 二○一九年四月 万方数据 I 致致 谢谢 时光荏苒,两年的硕士研究生学习生活即将画上一个圆满的句号。非常有幸能够进 入中国矿业大学这所百年学府,在这里我聆听了老师们的教诲,结识了新的朋友,在和 谐而又严谨的校园氛围中完成了我研究生生涯的学习。此时此刻,我的心中充满无限感 激。 首先感谢我的导师谭超副教授,本论文是在谭超副教授的悉心指导下完成的。两年 来,导师敏锐的思维、严谨的治学态度、渊博的学识、诚挚谦虚的品格和宽厚善良的处 世方式,永远值得我学习和效仿。导师在我的学业上尤其是在论文的撰写过程中,倾注 了大量的心血,给予了我许多教诲和指导,这将使我终生受益。两年来,导师还在生活 方面给予了我诸多慈父般的关怀和爱护,使我在感激之余常常感到心有不安。我将更加 努力,不辜负恩师的期望。 感谢课题组王忠宾、谭超、刘新华、司垒、韩振铎、闫海峰和姚新港等老师在课题 研究和科研实践中给予的热忱鼓励和悉心指导。 他们脚踏实地的作风、 平和谦虚的为人、 团结奋进的精神风貌为我树立了良好的榜样,这种潜移默化的作用将对我今后的工作、 学习产生不可估量的影响。在这里对他们致以深深的敬意 感谢课题组魏东博士、路绪良博士,满溢桥、蒋干、王坤、武子清、赵欣、刘婷等 硕士研究生在论文撰写期间提供的大力支持和无私帮助,在此致以最真挚的谢意。感谢 你们给予我的所有关心和帮助。 还要感谢徐州金枫液压技术开发有限公司的领导和全体员工, 感谢他们在我课题研 究和实验过程中给予的大力支持和指导。在此,谨向该公司致以衷心的感谢。 需要特别感谢的是我的父母。父母的养育之恩无以为报,他们是我多年求学路上的 坚强后盾,在我求学期间给予我始终如一的鼓励、关怀和支持,一直以来都是我前进的 动力。 最后,感谢各位专家和学者在百忙之中审阅我的论文,并给予宝贵的指导,在此谨 向各位专家学者表示衷心的感谢 万方数据 II 摘摘 要要 综采智能化是煤矿开采现代化的重要标志,由于综采工作面工况复杂,液压 支架处于不断推移过程中,液压支架运动构件的姿态轨迹具有不确定性,参数化 虚拟监测对实现液压支架智能化控制具有重要意义。 本文研究了液压支架顶梁与 底座传感数据处理方法,建立了液压支架运动构件姿态计算模型,开发了液压支 架运动状态虚拟监测软件。论文的主要工作及其研究成果如下 (1)分析了液压支架结构、工作原理和运动状态监测系统功能,设计了基 于姿态数据驱动的液压支架运动状态监测系统的总体架构, 设计了液压支架运动 状态监测软件流程及其主要模块。 (2) 研究了液压支架顶梁与底座姿态的倾角及惯性传感数据处理滤波方法, 开展了姿态数据滤波实验, 设计了基于自适应加权的顶梁与底座姿态角融合算法, 仿真实验表明 融合后的顶梁与底座的俯仰角、偏航角平均误差明显小于原始倾 角值。 (3)设计了基于液压支架运动构件的姿态参数解算算法,给出了液压支架 运动构件姿态中不可直接求解θ2、θ3、λ1、λ2参数的求解方法,仿真表明θ2、 θ3、λ1、λ2均方误差 MSE 分别为 0.000454、0.000957、0.000506、0.000945,满 足基于虚拟现实的液压支架运动状态监测对姿态精度的要求。 为验证液压支架运动状态监测系统的可行性,本文以 ZY2400-12-20D 型液 压支架为对象,开发了基于 Unity 3D 的液压支架运动状态虚拟监测软件,搭建 了基于姿态数据驱动的液压支架运动状态监测系统实验平台,并进行了实验, 结 果表明液压支架运动状态监测系统中,液压支架运动构件的姿态角平均误差最 大为 0.07,位移平均误差最大为 1.60cm,可以满足基于虚拟现实的液压支架 运动状态监测系统对精度的要求。 该论文有图 61 幅,表 17 个,参考文献 99 篇。 关键词关键词液压支架;滤波算法;运动学模型;虚拟监测 万方数据 III Abstract Intelligent of integrated mechanized coal mining is an important flay of modernization of coal mining. Due to the complicated working conditions of fully mechanized mining face, hydraulic support is in the process of continuous shifting, and the posture trajectory of the moving member of hydraulic support is uncertain. Therefors, The parametric virtual monitoring is of great significance for realizing the intelligent control of hydraulic support. In this paper, the sensor data processing of hydraulic support motion sensing is studied. The posture calculation model of hydraulic support motion component is established, and the virtual monitoring software of motion state is developed. The main work and research results of the thesis are as follows 1 The functions of hydraulic support structure, working principle and motion state monitoring system are analyzed. The overall structure of the motion monitoring system of hydraulic support based on posture data is designed, and the corresponding software flow and main modules are studied. 2 The filtering of inclinometer and inertial measurement unit of hydraulic support canopy and base is studied.and the posture data filtering experiment is carried out. The adaptive weighting algorithm of the canopy and the base posture angle is designed and simulated. The simulation experiment shows that the average error of the pitch angle and yaw angle of the combined canopy base is significantly smaller than the original inclination angle. 3 Based on the D-H kinematics model of the hydraulic support, the posture parameter calculation of the hydraulic support moving member is designed. The for solving the parameters that can not be directly solved in the hydraulic support motion state is given. The simulation shows that the mean square errors of θ2、 θ3、λ1、λ2 are 0.000454, 0.000957, 0.000506, 0.000945,respectively, which satisfies the accuracy requirements for the motion state monitoring of hydraulic support. In order to verify the feasibility of the hydraulic support motion state monitoring system, this paper developed a virtual monitoring software for the motion state of the hydraulic support based on Unity 3D with the ZY2400-12-20D hydraulic support. The monitoring system experimental plat of hydraulic support motion state driven by posture data was built, and some experiments have been carried out. The experiment results show that the average posture error of the hydraulic support moving member is 万方数据 IV 0.07 , and the displacement average error is 1.60cm,which can meet the accuracy requirements of the virtual reality-based hydraulic support motion monitoring system. The paper has 61 pictures, 17 tables, and 99 references. Keywords Hydraulic support; Filtering algorithm; Kinematic model; Virtual monitoring 万方数据 V 目目 录录 摘要摘要 ............................................................................................................................... 3 目录目录 .............................................................................................................................. V 图清单图清单 .........................................................................................................................IX 表清单表清单 ..................................................................................................................... XIII 变量注释表变量注释表 ............................................................................................................... XV 1 绪论绪论 ............................................................................................................................ 1 1.1 课题来源及背景...................................................................................................... 1 1.2 课题研究现状及存在的问题.................................................................................. 2 1.3 课题研究内容与方法.............................................................................................. 5 1.4 课题研究意义.......................................................................................................... 6 1.5 论文结构.................................................................................................................. 6 2 液压支架运动状态监测系统总体设计液压支架运动状态监测系统总体设计 .................................................................... 8 2.1 液压支架的结构及工作过程.................................................................................. 8 2.2 液压支架运动状态监测系统总架构.................................................................... 11 2.3 液压支架运动状态监测软件架构........................................................................ 13 2.4 本章小结................................................................................................................ 14 3 液压支架顶梁与底座姿态数据求解方案研究液压支架顶梁与底座姿态数据求解方案研究 ...................................................... 15 3.1 液压支架顶梁与底座姿态数据处理方案 ........................................................... 15 3.2 基于倾角传感器的液压支架顶梁与底座姿态数据滤波 ................................... 16 3.3 基于惯性测量单元的液压支架顶梁与底座姿态数据滤波 ............................... 23 3.4 液压支架顶梁与底座两轴姿态角数据融合方法 ............................................... 29 3.5 本章小结 ............................................................................................................... 33 4 液压支架运动液压支架运动构件姿态构件姿态解算解算 .................................................................................. 35 4.1 基于 D-H 矩阵的液压支架运动学模型 .............................................................. 35 4.2 基于 BP 神经网络的液压支架姿态参数求解 ..................................................... 43 4.3 本章小结................................................................................................................ 49 5 实验研究实验研究 .................................................................................................................. 51 5.1 基于 Unity 3D 的监测软件开发........................................................................... 51 万方数据 VI 5.2 实验研究对象及设备............................................................................................ 61 5.3 实验平台搭建及实验结果分析............................................................................ 64 5.4 本章小结................................................................................................................ 69 6 总结与展望总结与展望 .............................................................................................................. 70 6.1 总结........................................................................................................................ 70 6.2 展望........................................................................................................................ 70 参考文献参考文献 ..................................................................................................................... 73 作者简历作者简历 ..................................................................................................................... 79 万方数据 VII Contents Abstract ......................................................................................................................... 3 Content ......................................................................................................................... V List of Figures .............................................................................................................IX List of Tables .......................................................................................................... XIII List of Variables ....................................................................................................... XV 1 Introduction ............................................................................................................. 1 1.1 Origin and Background ........................................................................................... 1 1.2 Research Status and Problems ................................................................................. 2 1.3 Research Contents and s ............................................................................. 5 1.4 Research Significance ............................................................................................. 6 1.5 Structure of Thesis ................................................................................................... 6 2 Overall Design of Hydraulic Support Motion Virtual Monitoring System ....... 8 2.1 Basic Structure and Working Process of Hydrulic Suppor ..................................... 8 2.2 Overall Frame Structure of Hydraulic Support Motion Virtual Monitoring System ................................................................................................................... 11 2.3 Software Architecture Module of Hydraulic Support Motion Virtual Monitoring ............................................................................................................. 13 2.4 Summary ............................................................................................................... 14 3 Research on Solution of Posture Data of Hydraulic Supporting Canopy and Base ................................................................................................... 15 3.1 Posture Data Processing Solution of Hydraulic Support of Canopy and Base ..... 15 3.2 Posture Data Filtering of Hydraulic Support Canopy and Base Based on Inclination Sensor .................................................................................................. 16 3.3 Posture Data Filtering of Hydraulic Support Canopy and Base Based on Inertial Measurement Unit ................................................................................................. 23 3.4 Multi-Sensor Fusion of Posture Angle of Hydraulic Support Canopy and Base ....................................................................................................................... 29 3.5 Summary ............................................................................................................... 33 4 The Solution for Posture Parameter of Hydraulic Support Motion Member . 35 万方数据 VIII 4.1 Hydraulic support motion model Based on D-H coordinate ................................. 35 4.2 The Solution of Hydraulic Support Parameter Base on BP Neural Network........ 43 4.3 Summary ............................................................................................................... 49 5 Experimental Study ............................................................................................... 51 5.1 Development of Hydraulic Support Monitoring Plat Based on Unity 3D .... 51 5.2 Experimental research objects and equipment ...................................................... 61 5.3 Constructe the Experimental Plat and Analysis of Results ........................... 64 5.4 Summary ............................................................................................................... 69 6 Summary and Porecast ......................................................................................... 70 6.1 Summary ............................................................................................................... 70 6.2 Porecast ................................................................................................................. 70 Reference .................................................................................................................... 73 Author’s Resume ........................................................................................................ 79 万方数据 IX 图清单图清单 图序号 图名称 页码 图 1-1 综采工作面 1 Figure 1-1 Fully mechanized mining face 1 图 1-2 液压支架运动状态监测技术路线 6 Figure1-2 Hydraulic support motion monitoring technology route 6 图 2-1 综采工作面三机 8 Figure 2-1 Three machines schematic diagram matched in coal mining working face 8 图 2-2 掩护式液压支架结构图 9 Figure 2-2 Shield hydraulic support structure diagram 9 图 2-3 液压支架液压原理图 10 Figure 2-3 Hydraulic schematic of hydraulic support 10 图 2-4 俯仰方向的液压支架异常支护状态示意图 11 Figure 2-4 Abnormal supporting posture of hydraulic support along the direction overlooking face 11 图 2-5 液压支架运动状态监测系统总架构 12 Figure 2-5 General framework of hydraulic support motion state monitoring 12 图 2-6 综采工作面顺槽控制中心 12 Figure 2-6 Fully mechanized mining face centralized mo