煤矿震动波CT反演探测技术的优化与应用.pdf
国家重点研发计划(2016YFC0801403) 国家自然科学基金(51404269) 江苏省重点研发计划(BE2015040) 江苏省高校优势学科建设工程资助项目(SZBF2011-6-B35) 中央高校基本科研业务专项资金项目2014XT01 硕士学位论文 煤矿震动波 CT 反演探测技术的优化与应用 Optimization and Application of Seismic Computerized Tomography in Coal Mines 作 者李静 导 师巩思园 副研究员 中国矿业大学 二○一七年五月 万方数据 中图分类号 TD324 学校代码 10290 UDC 622 密 级 公开 中国矿业大学 硕士学位论文 煤矿震动波 CT 反演探测技术的 优化与应用 Optimization and Application of Seismic Computerized Tomography in Coal Mines 作 者 李静 导 师 巩思园 申请学位 工学硕士 培养单位 矿业工程学院 学科专业 采矿工程 研究方向 灾害防控 答辩委员会主席 柏建彪 评 阅 人 刘长友、于师建 二○一七年五月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰写的学 位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一,学位论文著作权拥有者须授权所在学校拥有学位论文的 部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电子版,可以使 用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和科研目的,学校档案 馆和图书馆可以将公开的学位论文作为资料在档案馆、图书馆等场所或在校园网上供校 内师生阅读、浏览。另外,根据有关法规,同意中国国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 致谢致谢 阳光温煦,岁月静好,唯惜时光如走马。 首先,感谢导师巩思园副研究员三年以来的孜孜教诲巩老师严谨的治学态度、谦 逊的处事风格以及精益求精的科研创新精神潜移默化的影响着我, 这将是我一生受用不 尽的财富。论文的顺利完成离不开导师的付出和心血,导师在论文的选题、理论分析、 代码编写、算法实践等方面提供了悉心指导。此外,导师在我的生活和个人发展方面也 给予了无微不至的关怀,每当我遇到困难或选择时,导师的建议和鼓励是我不断前进的 动力。值此毕业之际,再次向我的恩师致以真诚的感谢和崇高的敬意 论文的完成得到了冲击矿压课题组老师及师兄弟们的鼎力帮助, 衷心感谢窦林名教 授、牟宗龙教授、曹安业教授、陆菜平教授、贺虎副教授、何江讲师、蔡武讲师在论文 方面的指导,感谢朱广安博士、沈威博士、刘广建博士、王正义博士、刘志刚博士、张 敏博士在问题分析方面提供的思路,感谢孙尚鹏硕士、马志强硕士、王常彬硕士、井广 成硕士、吴芸硕士、王盛川硕士、王翰秋硕士、高笑彬硕士、黄现成硕士、魏兵硕士、 程贺贺硕士、陈凡硕士、张腾达硕士、牛风卫硕士、马滕飞硕士、康凯硕士、解嘉豪硕 士、冯龙飞硕士、龚少坤硕士、钱云鹏硕士、刘尊严硕士、陈为帅硕士、李安宁硕士、 白金正硕士、杨景硕士、曹晋荣硕士、曹京龙硕士在数据处理和资料收集方面给予的帮 助。冲击矿压课题组是个温暖的大家庭,与你们三年的相处弥足珍贵,点点滴滴,历历 在目,此生难忘。 感谢中国矿业大学矿业工程学院、煤炭资源与安全开采国家重点实验室、采矿系的 各位老师、领导在科学研究上的支持与指导,感谢他们为我提供的优越的科研平台和良 好的生活环境。 特别要感谢的是我辛苦了一辈子的父母哀哀父母,生我劳瘁,你们的恩情我永远 报答不完,只希望爸妈身体健康,不再有忧愁,这是我最大的心愿 最后,向百忙之中审阅本文和参加论文答辩的各位专家、教授致谢,并恳请指正 万方数据 I 摘摘 要要 冲击矿压是煤矿安全开采的主要威胁之一,随着矿井采深的进一步加大,矿山压力 显现更加严重和复杂,如何准确、快速、高分辨率地获得煤岩体内部应力信息对冲击矿 压的预测预警意义重大。 本论文主要围绕震动波 CT 探测技术在煤矿应用中存在的问题, 对影响反演的因素进行了深入分析,重点研究了主动 CT 中 P 波到时误差和被动 CT 中 反演模型网格划分不合理的问题,进而提出了对应的优化措施,并在现场进行了工程实 践应用。 建立了主动 CT 反演模型,以准确性和耗时多少为标准挑选出了反演最优算法,并 以该最优算法进行了两组对比试验。试验结果表明在所有雷管延时相同的情况下,延 时越长,反演得到的整体波速越低,反演误差越大,但区域内的高波速区位置变化不明 显; 不同雷管延时组合下反演得到的结果误差更大, 研究区域内的波速变化跨度也很大, 且高低波速区的位置将发生不可预知的变化。 根据现场记录的 P 波到时和传播距离之间的关系, 提出了最小二乘法线性拟合消除 雷管延时即修正 P 波到时的方法。将该方法应用于星村煤矿 3310 工作面主动 CT 反演 实践中,成功求得了 P 波实际传播时间。之后,将延时消除后的 P 波到时数据用于反演 计算,结果显示 3310 工作面存在 4 个高波速区域,理论分析和现场观测均表明这些区 域是高应力集中区,佐证了反演的可靠性,也说明该雷管延时消除方法的准确性。 基于震动波被动 CT 原理和工作面回采过程中的矿震分布特点,提出了一种自适应 不等间距反演模型网格划分的方法, 该方法可以改善等间距反演模型中反演分辨率和效 率之间的矛盾。 该自适应不等间距网格划分方法采用PCA方法求解矿震分布的主方向, 采用卡方分布、置信区间、马氏距离等理论求解矿震分布的集中范围,进而求解矿震置 信椭球的空间位置, 最后在置信椭球投影范围内的模型区域采用加密的等间距网格划分, 投影外的区域采用稀疏的不等间距网格划分。 采用济三煤矿 53下02 工作面回采期间的矿震数据进行不等间距反演模型网格划分 实践,实践表明该网格划分方法可以根据矿震分布特点自动建立反演模型,在矿震集中 区加密网格,在矿震稀疏区减少网格。与等间距网格模型反演对比试验表明,该不等间 距网格模型可以大幅度减少模型网格数目,极大地提高了反演的效率,且在重点研究区 域分辨率更高;在准确性方面,未来一段时间内的矿震监测结果显示,大能量矿震发生 的位置很好地匹配了不等间距模型下反演预测的高波速区域内, 佐证了该模型下反演结 果的可靠性更高。 该论文有图 69 幅,表 3 个,参考文献 76 篇。 关键词关键词冲击矿压;矿震;震动波 CT 反演;雷管延时;反演模型 万方数据 II Abstract Rockburst is one of main threats to safe coal mining, and mining pressure will be more serious and complicated with the increase of mining depth, therefore, it is of great significance to accurately and rapidly obtain high-resolution coal-rock stress imaging for predicting and preventing rockburst hazards. The thesis focuses on the application and problems of seismic CT technique in coal mines. First of all, influence factors of inversion results are deeply analyzed, including the error of P-wave arrival time in active CT and unreasonable grid division in passive CT model, and then corresponding optimization measures are put forward. At last, the optimized s are applied to the engineering practice and field application. After establishing active CT model, the optimal inversion algorithm is selected based on the accuracy and time consumption, and two delay-time experiments are carried out using this optimal inversion algorithm. Experimental results show that if all detonators have same delay time, the longer the delay time is, the grater the regional velocity will decline and the higher the errors will be according to inversion results, although changes of high and low velocity areas are not obvious. However, velocity variations and errors are very large in the study area if different delay combinations are used in an active CT operation, and areas with high and low velocities will change unpredictably. According to relationship between P-wave travel time and propagation distance, a detonator delay elimination namely, P-wave arrival time modification is proposed adopting least squares linear fitting . The actual P-wave propagation time was obtained using this in an active CT operation in No.3310 working face of Xingcun Coal Mine. After that, P-wave arrival time with delay eliminated was applied to inversion calculation. Inversion results show that there were four high velocity areas in 3310 working face, and these areas were certified to be high stress areas though theoretical analysis and field observations, which proves the reliability of CT technique and accuracy of delay elimination . Based on principle of passive CT technique and characteristics of mine tremor distributions during coal mining period, an adaptive unequal-spacing grid division is proposed which can improve the contradiction between the resolution and efficiency existed in the equal-spacing model. This grid-dividing adopts PCA to calculate principal directions of mine tremors, and uses concepts of Chi-square distribution, Confidence interval and Mahalanobis distance to determine tremor concentration regions, thereby obtaining 万方数据 III confidence ellipsoid. Grids will be divided densely within the confidence ellipsoid projection, while grids will be divided sparsely outside the confidence ellipsoid projection. Unequal-spacing model was ed using mine tremor data during mining period of No.5302 working face in Jisan Coal Mine. Practice indicates that this grid-dividing could automatically establish inversion model, which could increase grid number within the tremor concentration ranges and reduce grid number out the tremor concentration ranges. Compared with equal-spacing inversion model, this unequal-spacing grid-dividing could greatly decrease grid number and improve inversion efficiency. Apart from that, this could also increase inversion resolution in the key research area. The future monitoring results showed that tremors with high energy mostly occurred in the high velocity areas predicted by inversion result with unequal-spacing model, proving that reliability will be much higher if passive CT using this unequal-spacing model compared with equal-spacing model. This thesis has 69 figures, 3 tables and 76 references. Keywords rock burst; mine tremors; seismic computerized tomography; detonator delay; inversion model 万方数据 IV 目目 录 录 摘摘 要要 ......................................................................................................................................... I 目目 录录 ...................................................................................................................................... IV 图清单图清单 ................................................................................................................................... VIII 表清单表清单 ................................................................................................................................... XIII 变量注释表变量注释表 ........................................................................................................................... XIV 1 绪论绪论 ......................................................................................................................................... 1 1.1 研究背景及意义 ................................................................................................................. 1 1.2 研究现状综述 ..................................................................................................................... 2 1.3 主要研究内容 ..................................................................................................................... 6 1.4 研究技术路线 ..................................................................................................................... 6 2 雷管延时对主动雷管延时对主动 CT 反演影响试验研究反演影响试验研究 ............................................................................ 8 2.1 引言 ..................................................................................................................................... 8 2.2 主动 CT 探测技术原理 ...................................................................................................... 8 2.3 反演算法分析 ..................................................................................................................... 9 2.4 雷管延时对反演试验研究 ............................................................................................... 12 2.5 小结 ................................................................................................................................... 24 3 P 波到时修正及现场验证波到时修正及现场验证 ................................................................................................... 25 3.1 引言 ................................................................................................................................... 25 3.2 P 波旅行时间修正方法 ..................................................................................................... 25 3.3 现场验证 ........................................................................................................................... 28 3.4 小结 ................................................................................................................................... 35 4 被动被动 CT 反演模型网格划分优化反演模型网格划分优化 ...................................................................................... 36 4.1 引言 ................................................................................................................................... 36 4.2 被动 CT 技术原理 ............................................................................................................ 36 4.3 自适应不等间距网格划分 ............................................................................................... 38 4.4 小结 ................................................................................................................................... 45 5 不等间距网格模型反演实践不等间距网格模型反演实践 .............................................................................................. 46 5.1 引言 ................................................................................................................................... 46 万方数据 V 5.2 工作面简介 ........................................................................................................................ 46 5.3 不等间距网格划分 ............................................................................................................ 47 5.4 不同网格模型反演结果对比 ............................................................................................ 51 5.4 小结 ................................................................................................................................... 55 6 主要结论主要结论 .............................................................................................................................. 56 参考文献参考文献 .................................................................................................................................. 58 附录附录 A ...................................................................................................................................... 63 附录附录 B ...................................................................................................................................... 65 作者简历作者简历 .................................................................................................................................. 73 学位论文原创性声明学位论文原创性声明 .............................................................................................................. 74 学位论文数据集学位论文数据集 ...................................................................................................................... 75 万方数据 VI Contents Abstract .................................................................................................................................... II Contents ................................................................................................................................... VI List of Figures ...................................................................................................................... VIII List of Tables ........................................................................................................................ XIII List of Variables ................................................................................................................... XIV 1 Introduction ........................................................................................................................... 1 1.1 Research Significance and Background of Thesis ............................................................... 1 1.2 Present Research .................................................................................................................. 2 1.3 Main Research Objectives .................................................................................................... 6 1.4 Research Route ..................................................................................................................... 6 2 Experimental Study on the Influence of Detonator Delay on Active CT ......................... 8 2.1 Foreword .............................................................................................................................. 8 2.2 Principle of Active CT Technique ........................................................................................ 8 2.3 Analysis of Inversion Algorithms ......................................................................................... 9 2.4 Impact of detonator delay on active CT ............................................................................. 12 2.5 Summary ............................................................................................................................ 24 3 Modification of P-wave Travel Time and Site Verification.............................................. 25 3.1 Foreword ............................................................................................................................ 25 3.2 Modification of P-wave Travel Time ................................................................................. 25 3.3 Field Verification ................................................................................................................ 28 3.