第1章 电力电子器件概述(1).ppt
1,,第1章电力电子器件,2,,1.1电力电子器件概述1.2不可控器件二极管1.3半控型器件晶闸管1.4典型全控型器件1.6电力电子器件的驱动,3,1.1.1电力电子器件的概念和特征1.1.2应用电力电子器件的系统组成1.1.3电力电子器件的分类,1.1电力电子器件概述,4,1)概念电力电子器件(PowerElectronicDevice)可直接用于主电路中,实现电能的变换或控制的电子器件。主电路(MainPowerCircuit)电气设备或电力系统中,直接承担电能的变换或控制任务的电路。2)分类电真空器件汞弧整流器、闸流管半导体器件采用的主要材料硅)仍然,,1.1.1电力电子器件的概念和特征,电力电子器件,5,能处理电功率的能力,一般远大于处理信息的电子器件。电力电子器件一般都工作在开关状态。电力电子器件往往需要由信息电子电路来控制。电力电子器件自身的功率损耗远大于信息电子器件,一般都要安装散热器。,1.1.1电力电子器件的概念和特征,3)同处理信息的电子器件相比的一般特征,6,电力电子系统由控制电路、驱动电路、保护电路和以电力电子器件为核心的主电路组成。,图1-1电力电子器件在实际应用中的系统组成,在主电路和控制电路中附加一些电路,以保证电力电子器件和整个系统正常可靠运行,,1.1.2应用电力电子器件系统组成,电气隔离,控制电路,7,半控型器件(Thyristor)通过控制信号可以控制其导通而不能控制其关断。全控型器件(IGBT,MOSFET通过控制信号既可控制其导通又可控制其关断,又称自关断器件。不可控器件PowerDiode不能用控制信号来控制其通断,因此也就不需要驱动电路。,1.1.3电力电子器件的分类,按照器件能够被控制的程度,分为以下三类,8,电流驱动型通过从控制端注入或者抽出电流来实现导通或者关断的控制。电压驱动型仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。,1.1.3电力电子器件的分类,按照驱动电路信号的性质,分为两类,9,1.2.1PN结与电力二极管的工作原理1.2.2电力二极管的基本特性1.2.3电力二极管的主要参数1.2.4电力二极管的主要类型,1.2不可控器件电力二极管,10,PowerDiode结构和原理简单,工作可靠,自20世纪50年代初期就获得应用。快恢复二极管和肖特基二极管,分别在中、高频整流和逆变,以及低压高频整流的场合,具有不可替代的地位。,1.2不可控器件电力二极管引言,整流二极管及模块,11,基本结构和工作原理与信息电子电路中的二极管一样。由一个面积较大的PN结和两端引线以及封装组成的。从外形上看,主要有螺栓型和平板型两种封装。,,图1-2电力二极管的外形、结构和电气图形符号a外形b结构c电气图形符号,1.2.1PN结与电力二极管的工作原理,12,二极管的基本原理就在于PN结的单向导电性这一主要特征。,1.2.1PN结与电力二极管的工作原理,PN结的状态,13,主要指其伏安特性门槛电压UTO,正向电流IF开始明显增加所对应的电压。与IF对应的电力二极管两端的电压即为其正向电压降UF。承受反向电压时,只有微小而数值恒定的反向漏电流。,图1-4电力二极管的伏安特性,1.2.2电力二极管的基本特性,1静态特性,14,2动态特性二极管的电压-电流特性随时间变化的结电容的存在,1.2.2电力二极管的基本特性,,图1-5电力二极管的动态过程波形a正向偏置转换为反向偏置b零偏置转换为正向偏置,延迟时间tdt1-t0,电流下降时间tft2-t1反向恢复时间trrtdtf恢复特性的软度下降时间与延迟时间的比值tf/td,或称恢复系数,用Sr表示。,15,正向压降先出现一个过冲UFP,经过一段时间才趋于接近稳态压降的某个值(如2V)。正向恢复时间tfr。电流上升率越大,UFP越高。,图1-5b开通过程,1.2.2电力二极管的基本特性,开通过程,关断过程须经过一段短暂的时间才能重新获得反向阻断能力,进入截止状态。关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲。,图1-5b关断过程,,16,额定电流在指定的管壳温度和散热条件下,其允许流过的最大工频正弦半波电流的平均值。IFAV是按照电流的发热效应来定义的,使用时应按有效值相等的原则来选取电流定额,并应留有一定的裕量。电流的热效应规定让交流和直流通过相同阻值的电阻,如果它们在相同的时间内产生的热量相等,就把这一直流的数值叫做这一交流的有效值,1.2.3电力二极管的主要参数,1正向平均电流IFAV,17,在指定温度下,流过某一指定的稳态正向电流时对应的正向压降。3)反向重复峰值电压URRM对电力二极管所能重复施加的反向最高峰值电压。使用时,应当留有两倍的裕量。,1.2.3电力二极管的主要参数,2)正向压降UF,18,1.3半控器件晶闸管,1.3.1晶闸管的结构与工作原理1.3.2晶闸管的基本特性1.3.3晶闸管的主要参数1.3.4晶闸管的派生器件,19,1.3半控器件晶闸管引言,1956年美国贝尔实验室发明了晶闸管。1957年美国通用电气公司开发出第一只晶闸管产品。1958年商业化。开辟了电力电子技术迅速发展和广泛应用的崭新时代。20世纪80年代以来,开始被全控型器件取代。能承受的电压和电流容量最高,工作可靠,在大容量的场合具有重要地位。,晶闸管(Thyristor)晶体闸流管,可控硅整流器(SiliconControlledRectifierSCR),20,图1-6晶闸管的外形、结构和电气图形符号a外形b结构c电气图形符号,1.3.1晶闸管的结构与工作原理,外形有螺栓型和平板型两种封装。有三个联接端。螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便。平板型晶闸管可由两个散热器将其夹在中间。,,21,1.3.1晶闸管的结构与工作原理,常用晶闸管的结构,螺栓型晶闸管,晶闸管模块,平板型晶闸管外形及结构,22,图1-2晶闸管的双晶体管模型,晶闸管是一四层结构(PNPN)的大功率半导体器件(见图1-2a)。有J1、J2和J3三个PN结。P1区引出阳极A,N2区引出阴极K,P2区引出门极G。当AK之间加正向电压时,J1和J3承受正向电压;而J2承受反向电压,这时晶闸管不导通,PNPN结构处于正向阻断状态(也称关断状态),只能通过很小的正向漏电流。,a,b,c,1.3.2晶闸管的工作原理,23,图1-2晶闸管的双晶体管模型,当AK之间加反向电压时,J1和J3承受反向电压,虽然J2承受正向电压,但这时晶闸管也不导通,PNPN结构处于反向阻断状态(也称关断状态),只能通过很小的反向漏电流,与二极管的反向特性相似。晶闸管的工作原理通常用串级的双晶体管模型来解释(见图1-2bc),a,b,c,1.3.2晶闸管的工作原理,24,如果门极电流IG注入晶体管T2的基极,即产生集电极电流IC2,它构成晶体管T1的基极电流,放大成T1的集电极电流IC1,又进一步增大晶体管T2的基极电流,如此形成强烈的正反馈,最后T1、T2进入饱和状态(深度饱和状态),即晶闸管饱和导通。,晶闸管导通过程,ICBO1ICBO2为T1T2的共基极漏电流12为T1T2的共基极电流增益,,共基极连接的晶体管满足下式,随发射极电流的增大而增大,25,1.3.2晶闸管的结构与工作原理,阳极电压升高至相当高的数值造成雪崩效应阳极电压上升率du/dt过高结温较高光触发光触发可以保证控制电路与主电路之间的良好绝缘而应用于高压电力设备中,称为光控晶闸管(LightTriggeredThyristorLTT)。只有门极触发是最精确、迅速而可靠的控制手段。,其他几种可能导通的情况,26,1.3.2晶闸管的基本特性,承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。,晶闸管正常工作时的特性总结如下,27,1.3.2晶闸管的基本特性,(1)正向特性IG0时,器件两端施加正向电压,只有很小的正向漏电流,为正向阻断状态。正向电压超过正向转折电压Ubo,则漏电流急剧增大,器件开通。随着门极电流幅值的增大,正向转折电压降低。晶闸管本身的压降很小,在1V左右。,1)静态特性,图1-8晶闸管的伏安特性IG2IG1IG,28,1.3.2晶闸管的基本特性,反向特性类似二极管的反向特性。反向阻断状态时,只有极小的反相漏电流流过。当反向电压达到反向击穿电压后,可能导致晶闸管发热损坏。,图1-8晶闸管的伏安特性IG2IG1IG,(2)反向特性,29,1.3.2晶闸管的基本特性,1开通过程延迟时间td0.51.5s上升时间tr0.53s开通时间tgt以上两者之和,tgttdtr(1-6),2关断过程反向阻断恢复时间trr正向阻断恢复时间tgr关断时间tq以上两者之和tqtrrtgr(1-7普通晶闸管的关断时间约几百微秒,2)动态特性,图1-9晶闸管的开通和关断过程波形,30,断态不重复峰值电压UDSM,断态重复峰值电压UDRM,反向不重复峰值电压URSM,反向重复峰值电压URRM,额定电压,通态平均电压UON,晶闸管的电压定额,1.3.3晶闸管的主要参数,1晶闸管的电压定额,31,1.3.3晶闸管的主要参数,断态重复峰值电压UDRM在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压。反向重复峰值电压URRM在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。通态(峰值)电压UT晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。,通常取晶闸管的UDRM和URRM中较小的标值作为该器件的额定电压。选用时,一般取额定电压为正常工作时晶闸管所承受峰值电压23倍。,使用注意,1)电压定额,32,2晶闸管的电流定额,,浪涌电流ITSM,断态重复峰值电流IDRM和反向重复峰值电流IRRM,擎住电流IL,维持电流IH,通态平均电流ITav,33,2晶闸管的电流定额,㈠通态平均电流ITav,图1-6晶闸管的通态平均电流,ITav定义为在额定结温时,所允许通过的工频正弦半波电流的平均值。用该值作为晶闸管额定电流的标称值。,波形系数Kf电流有效值/电流平均值I/IAV,正弦半波电流的有效值,根据电流有效值相等即发热相同的原则,将非正弦半波电流的有效值I或平均值IAV折合成等效的正弦半波电流平均值ITav去选择晶闸管的电流额定值。,,在给定晶闸管电流额定值ITav的情况下,也可计算出流过该晶闸管的任意波形允许的电流平均值IAV。,,,34,例流经晶闸管的电流波形如图1.7所示。试计算该电流波形的平均值、有效值及波形系数。若取安全裕量为2,问额定电流为100A的晶闸管,其允许通过的平均值和最大值为多少若该波形通过电流的平均值为100A,问应选择多大额定电流的晶闸管,图1-7晶闸管的电流波形,解,100A额定电流的晶闸管只能通过34.5A平均电流(图1-7电流波形情况下),(图1-7电流波形情况下)要通过100A平均电流须选用283A额定电流的晶闸管,,35,1.3.3晶闸管的主要参数,维持电流IH使晶闸管维持导通所必需的最小电流。擎住电流IL晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流。对同一晶闸管来说,通常IL约为IH的24倍。浪涌电流ITSM指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流。,2)电流定额,36,1.4典型全控型器件,1.4.1门极可关断晶闸管1.4.3电力场效应晶体管1.4.4绝缘栅双极晶体管,37,1.4典型全控型器件引言,门极可关断晶闸管在晶闸管问世后不久出现。20世纪80年代以来,电力电子技术进入了一个崭新时代。典型代表门极可关断晶闸管、电力晶体管、电力场效应晶体管、绝缘栅双极晶体管。,38,1.4典型全控型器件引言,常用的典型全控型器件,电力MOSFET,IGBT单管及模块,39,1.4.1门极可关断晶闸管,晶闸管的一种派生器件。可以通过在门极施加负的脉冲电流使其关断。GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用。,门极可关断晶闸管(Gate-Turn-OffThyristorGTO),40,1.4.1门极可关断晶闸管,结构与普通晶闸管的相同点PNPN四层半导体结构,外部引出阳极、阴极和门极。和普通晶闸管的不同点GTO是一种多元的功率集成器件。,图1-13GTO的内部结构和电气图形符号a各单元的阴极、门极间隔排列的图形b并联单元结构断面示意图c电气图形符号,1)GTO的结构和工作原理,41,1.4.1门极可关断晶闸管,工作原理与普通晶闸管一样,可以用图1-7所示的双晶体管模型来分析。,图1-7晶闸管的双晶体管模型及其工作原理,121是器件临界导通的条件。,由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流增益1和2。,42,1.4.1门极可关断晶闸管,GTO能够通过门极关断的原因是其与普通晶闸管有如下区别,设计2较大,使晶体管V2控制灵敏。导通时12更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。,图1-7晶闸管的工作原理,43,与普通的双极结型晶体管基本原理是一样的。主要特性是耐压高、电流大、开关特性好。通常采用至少由两个晶体管按达林顿接法组成的单元结构。采用集成电路工艺将许多这种单元并联而成。,1.4.2电力晶体管,1)GTR的结构和工作原理,图1-15GTR的结构、电气图形符号和内部载流子的流动a内部结构断面示意图b电气图形符号c内部载流子的流动,44,1.4.2电力晶体管,在应用中,GTR一般采用共发射极接法。集电极电流ic与基极电流ib之比为(1-9)GTR的电流放大系数,反映了基极电流对集电极电流的控制能力。当考虑到集电极和发射极间的漏电流Iceo时,ic和ib的关系为icibIceo(1-10)单管GTR的值比小功率的晶体管小得多,通常为10左右,采用达林顿接法可有效增大电流增益。,1)GTR的结构和工作原理,45,1.4.2电力晶体管,1静态特性共发射极接法时的典型输出特性截止区、放大区和饱和区。在电力电子电路中GTR工作在开关状态。在开关过程中,即在截止区和饱和区之间过渡时,要经过放大区。,图1-16共发射极接法时GTR的输出特性,2)GTR的基本特性,46,1.4.3电力场效应晶体管,截止漏源极间加正电源,栅源极间电压为零。P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。导电在栅源极间加正电压UGS当UGS大于UT时,P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。,图1-19电力MOSFET的结构和电气图形符号,电力MOSFET的工作原理,47,1.4.4绝缘栅双极晶体管,两类器件取长补短结合而成的复合器件Bi-MOS器件绝缘栅双极晶体管(Insulated-gateBipolarTransistorIGBT或IGT)GTR和MOSFET复合,结合二者的优点。1986年投入市场,是中小功率电力电子设备的主导器件。继续提高电压和电流容量,以期再取代GTO的地位。,GTR和GTO的特点双极型,电流驱动,有电导调制效应,通流能力很强,开关速度较低,所需驱动功率大,驱动电路复杂。MOSFET的优点单极型,电压驱动,开关速度快,输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单。,48,1.4.4绝缘栅双极晶体管,1IGBT的结构和工作原理三端器件栅极G、集电极C和发射极E,图1-22IGBT的结构、简化等效电路和电气图形符号a内部结构断面示意图b简化等效电路c电气图形符号,49,1.4.4绝缘栅双极晶体管,驱动原理与电力MOSFET基本相同,场控器件,通断由栅射极电压uGE决定。导通uGE大于开启电压UGEth时,MOSFET内形成沟道,为晶体管提供基极电流,IGBT导通。通态压降电导调制效应使电阻RN减小,使通态压降减小。关断栅射极间施加反压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,IGBT关断。,IGBT的原理,50,1.6电力电子器件器件的驱动,1.6.1电力电子器件驱动电路概述1.6.2晶闸管的触发电路,51,1.6.1电力电子器件驱动电路概述,使电力电子器件工作在较理想的开关状态,缩短开关时间,减小开关损耗。对装置的运行效率、可靠性和安全性都有重要的意义。一些保护措施也往往设在驱动电路中,或通过驱动电路实现。驱动电路的基本任务按控制目标的要求施加开通或关断的信号。对半控型器件只需提供开通控制信号。对全控型器件则既要提供开通控制信号,又要提供关断控制信号。,驱动电路主电路与控制电路之间的接口,52,1.6.1电力电子器件驱动电路概述,驱动电路还要提供控制电路与主电路之间的电气隔离环节,一般采用光隔离或磁隔离。光隔离一般采用光耦合器磁隔离的元件通常是脉冲变压器,图1-25光耦合器的类型及接法a普通型b高速型c高传输比型,53,1.6.1电力电子器件驱动电路概述,按照驱动信号的性质分,可分为电流驱动型和电压驱动型。驱动电路具体形式可为分立元件的,但目前的趋势是采用专用集成驱动电路。双列直插式集成电路及将光耦隔离电路也集成在内的混合集成电路。为达到参数最佳配合,首选所用器件生产厂家专门开发的集成驱动电路。,分类,54,1.6.2晶闸管的触发电路,作用产生符合要求的门极触发脉冲,保证晶闸管在需要的时刻由阻断转为导通。晶闸管触发电路应满足下列要求脉冲的宽度应保证晶闸管可靠导通。触发脉冲应有足够的幅度。不超过门极电压、电流和功率定额,且在可靠触发区域之内。有良好的抗干扰性能、温度稳定性及与主电路的电气隔离。,t,图1-26理想的晶闸管触发脉冲电流波形t1t2脉冲前沿上升时间(1s)t1t3强脉宽度IM强脉冲幅值(3IGT5IGT)t1t4脉冲宽度I脉冲平顶幅值(1.5IGT2IGT),晶闸管的触发电路,