考虑非线性迟滞力的机床颤振系统稳定性研究.pdf
第 4 9卷第 1 1 期 2 0 1 3 年 6 月 机械工程学报 J OURNAL 0F MECHANI CAL ENGI NEERI NG Vo 1 . 49 J u n . NO. 1 1 2 0 l 3 DoI 1 O . 3 90 1 / J M E. 2 01 3 . 1 1 . 0 43 考虑非线性迟滞力的机床颤振系统稳定性研究木 李勤良1 , 2 汪 博 赵 斌 。 闻邦椿 1 .东北大学机械工程与 自动化学院沈阳 1 1 0 8 1 9 ; 2 .大连大学先进设计与智能计算省部共建教育部重点实验室大连 1 1 6 6 2 2 ; 3 .河南工业大学机 电工程学院郑州4 5 0 0 0 7 摘要从正交车削过程出发,建立含有非线性迟滞力和激振力的机床单 自由度颤振模型,利用多尺度法对系统的非线性动力 学方程进行求解,得到系统振幅和相位的分岔方程以及响应的二阶近似解。利用叶瓣图对系统的线性稳定性进行分析,为后 续的稳定性分析建立颤振频率与时滞间的临界关系,提出用振幅极限值表征系统的颤振失稳现象, 研究转速和滞回参数对颤 振失稳产生的影响,并进一步讨论系统中存在的时滞因素。通过三维图谱分析转速和滞回参数对系统响应产生的影响,对其 中存在的非线性动力学现象进行阐述,结果表明滞回参数在低转速工况下对系统非线性稳定性影响较为剧烈,所采用方法 和数据结果可以为机床高速主轴系统切削稳定性预测以及动态优化设计提供参考依据。 关键词颤振时滞滞回参数非线性稳定性 中图分类号T H1 l 3 Re s e a r c h o n t he Cha t t e r S t a b i l i t y o f M a c h i n e S y s t e m Ta k i n g t h e No n l i ne a r Hy s t e r e t i c Fo r c e i n t o Co ns i d e r a t i o n L I Qi n l i a n g L WANG B o Z HAO Bi n WE N B a n g c h u n 1 . S c h o o l o f Me c h a n i c a l E n g i n e e r i n g a n d A u t o ma t i o n , No r t h e a s t e rn Un i v e r s i t y , S h e n y a n g 1 1 0 8 1 9 ; 2 . Ke y La b o r a t o r y o f Ad v a n c e d De s i g n a n d I n t e l l i g e n t Co mp u t i n g o f Mi n i s t r y o f E d u c a t i o n , Da l i a n Un i v e r s i ty, Da l i an 1 1 6 6 2 2 ; 3 . S c h o o l o f Me c h ani c a l E l e c t r i c a l E n g i n e e r i n g , He n a n Un i v e r s i ty o f T e c h n o l o g y , Z h e n g z h o u 4 5 0 0 0 7 Abs t r a c t Ba s e d o n t h e o r t h o g o n a l t u r n i n g p r o c e s s , the s i n g l e d e g r e e o f f r e e d o m c h a t t e r mo d e l t a k i n g the n o n l i n e a r h y s t e r e t i c a n d e x c i t i n g f o r c e i n t o c o n s i d e r a t i o n i s e s t a b l i s h e d . Th e n o n l i n e a r d y n a mi c e q u a t i o n o f c h a tt e r s y s t e m i s s o l v e d wi th the me tho d o f mu l t i p l e s c a l e s , an d t h e b i f u r c a t i o n e q u a t i o n s o f a mp l i t u d e p h a s e a n d a p p r o x i ma t e s e c o n d o r d e r p e rio d i c r e s p o n s e C an b e o b t a i n e d . T h e l o b e d i a gra m i s a p p l i e d t o ana l y z e the l i n e a r s tab i l i t y S O tha t the c rit i c a l r e l a t i o n s h i p b e t we e n the c h a tt e r fre q u e n c y a n d t i me d e l a y C an b e e s tab l i s h e d f o r the s u b s e q u e n t s tab i l i t y a n a l y s i s . Tl l e c h a tt e r i n s t a b i l i ty p h e n o me n o n i s c h ara c t e r i z e d b y t h e l i mi t e d am p l i t u d e a p p l i e d t o s t u d y the i mp a c t o f r o tat i n g s p e e d a n d h y s t e r e t i c p aram e t e r s . T h r o u g h the a b o v e i mp a c t a n aly s i s , t h e t i me d e l a y f a c t o r i s d i s c u s s e d f u r t h e r . Th e t h r e e - d i me n s i o n a l s p e c t r u m i s a d o p t e d t o an a l y z e the i mp a c t o f the r o tat ing s p e e d and h y s t e r e t i c p aram e t e r s o n r e s p o n s e an d e x p l a i n i t s n o n l i n e ar d y n am i c s . 1 1 1 e c o n c l u s i o n tha t the h y s t e r e t i c p a r a m e t e r s infl u e n c e the n o n l i n e ar s tab i l i ty mu c h mo r e o b v i o u s l y i n the l o w s p e e d c o n d i t i o n C an b e d e r i v e d .Th e me tho d s an d d a t a r e s u l t s p r o v i d e a the o r e t i c a l r e f e r e n c e for the c u tt i n g s tab i l i ty p r e d i c ti o n and d y n am i c o p t i mi z a t i o n d e s i g n in h i g h - s p e e d s p i n d l e s y s t e m o f ma c h i n e t o o 1 . Ke y wo r d s Ch a t t e r Ti me d e l a y Hy s t e r e t i c p ara me t e r s No n l i n e a r s tab i l i ty 0 前言 机械加工是零件制造 的一个重要环节 ,是保证 实现工件表面几何形状 的关键所在 。随着科学技 国家自然科学基金 5 0 9 0 5 吆9 和国家科技支撑计划 2 0 0 9 B A G1 2 A 0 1 - F 0 1 - 3 资助项 目。2 0 1 2 0 7 1 1收到初稿,2 0 1 3 0 1 1 9收到修改稿 术的进步和先进制造技术的发展,机械加工正朝着 高速、高效方向发展L2 J 。 在机床高速运行的过程 中,即使 比较微小的振 动也会影响切削刀具与工件接触面间的工作情况, 这种扰动通常会在切削面上 留下近似波纹状的加工 形状 ,当刀具运行到下一转时,前一转业 已形成的 凹凸不平的加工表面会 以非线性激振力的形式作用 学兔兔 w w w .x u e t u t u .c o m 机械工程学报 第 4 9卷第 l 1 期 到当前转的加工过程 中,并不断持续下去,从而形 成所谓 的再生性颤振 。数学上与这种颤振形式相关 的模型通常以时滞微分方程的形式描述 。 近年来,学者们运用多种方法力求更为精确地 求解此类 问题 。HA NNA 等L 3 ] 针对系统中的非线性 刚度和切削力建立等效单 自由度模型,通过试验对 面铣 问题进行研究,并针对系统中存在的有限振幅 失稳现象进行阐述 。NA GY 】 对单 自由度再生颤 振系统的时滞微分方程进行稳定性和 h o p f分岔的 研究。I NS P E RG E R等[ 5 - 6 ] 针对车削过程建立两 自由 度的时滞系统,分析 出状态时滞对机床 的影响。国 内方面 ,L I 等 7 J 对 T形槽铣削过程 的颤振稳定性进 行建模和解析求解。Y A N G 等【8 】 利用有限元法和模 态综合法对铣头机床中的特殊机构进行动态分析。 陈花玲等【 9 ] 在考虑机床结合面的迟滞非线性的基础 上,对 颤振稳定性和稳定性 阈分离等进行 分析 。 HA N 等 U J 运用平均法得出颤振系统的分岔方程 , 并进行稳定性和分岔特性的研究。 本文在考虑结合面迟滞非线性的基础上 ,建立 含有非线性激振力的机床单自由振动系统,利用多 尺度法求 出颤振系统 的分岔方程,对颤振系统的稳 定性进行研究,并在此基础上分析特征参数对系统 稳定性产生的影响。 1 颤振模型 图 1 为正交车削过程的单自由度颤振模型,这 个模型虽然维数较低,但是能够基本阐述机床系统 中的稳定性和非线性振动问题 。图 l中,m为机床 质量,k 为刚度系数 ,C为阻尼系数 ,h 0 为名义切削 厚度,f 为时滞变量,通常用 6 0 / 2 / t n 表示,n为转 速,X为位移 。 图 1 车削模型 系统的动力学方程可以表示为 O 2 戈 O f z △ F , f 1 m 式中 阻尼比 固有频率 一 迟滞非线性恢复力 z a x 3 p , 滞 回参数,非线性刚度和阻尼 △ F x , t 非线性动态激振力 F x , t Kd h 3 / K切削系数 d切削深度 h 切削厚度 系统 的切削厚度可 以表示为 .i z f h o x t 一 f 2 通过泰勒展开可 以将动态激振力表示为 △ , , f 3 / 一 K d h I [ rl l x 一 1 r 1 2 x - x r 1 3 x , 一 ] 3 式中7 1 1 3 / 4 h o /] 2 一 3 / 3 2 h r / 3 5 / 1 2 8 h x t X f 将以上各个参数代入方程式 1 1 中,系统的动力 学方程可 以转化为 f 2 co A t f 一 [ 一 一 z r 1 3 x 一 】 4 2 求解过程 通过多尺度法 ,引入表示不 同尺度 的时间变量 E n t n 0 1 ,则非线性振动过程可 以表示为 不同尺度时间变量的函数,由于迟滞力中存在三次 项和 出于简化计算的考虑,这里 的时间变量仅考虑 和 Xe x r o , , e % T o , ⋯ 5 将不同尺度的时间变量视为独立变量, 对时 间的微 分可利用复合 函数微 分公式按 占的幂 次展 开, 和 可以表示为 e Do x s2 Do x 2 o e 3 O2 x 1 Do X 3 ⋯ 6 占 2 o e2 2X 2 F . 3 2 D 2 D o x O ⋯ 7 式中, 为偏微分, a / a ,n 0 , 1 , ⋯ 。 学兔兔 w w w .x u e t u t u .c o m 学兔兔 w w w .x u e t u t u .c o m 学兔兔 w w w .x u e t u t u .c o m 学兔兔 w w w .x u e t u t u .c o m 学兔兔 w w w .x u e t u t u .c o m 2 0 1 3年 6月 李勤良等考虑非线性迟滞力的机床颤振系统稳定性研究 和 “ 退化”现象,相比之下,非线性阻尼对系统的 影响更为平缓。在高转速的情况下 ,滞回参数对系 统影响较弱。 参考文献 [ 1 】王跃辉 ,王民.金属切削过程颤振控制技术的研究进 展[ J ] . 机械工程学报,2 0 1 0 ,4 6 7 7 1 6 6 . 1 7 4 . WANG Yu e h u i ,WANG M i n .Ad v a n c e s o n ma c h i n i n g c h a tt e r s u p p r e s s i o n r e s e a r c h [ J ] .J o u r n a l o f Me c h a n i c a l E n g i n e e r i n g ,2 0 1 0 ,4 6 7 7 1 6 6 1 7 4 . [ 2 】陈金成,徐志明,钟廷修,等.机床沿 曲线高速加工 时的运动学与动力学特性分析[ J ] .机械工程学报, 2 0 0 2 ,3 8 1 3 I - 3 4 . CHEN J i n c h e n g,XU Zh i mi n g,Z HONG T i n g x i u,e t a 1 . An a l y s i n g k i n e ma t i c a n d d y n a mi c p r o p e r t i e s o f a m a c h i n e t o o l a l o n g c u r v e d t o o l p a t h i n h i g h ma c h i n i n g [ J ] Ch i n e s e J o u r n a l o f M e c h an i c a l E n g i n e e rin g, 2 0 0 2, 3 8 1 3 1 - 3 4 . [ 3 】 H A N NA N H,T OB I AS S A.A the o r y o f n o n l i n e a r r e g e n e r a t i v e c h a t t e r [ J ] . J o u r n a l o f E n g i n e e ri n g f o r I n d u s t r y ,1 9 7 4 ,9 6 1 2 4 7 - 2 5 5 . [ 4 ] NA GY T K,S T E P AN G,MO O N F C. S u b c r i t i c a l h o p f b i f u r c a t i o n i n the d e l a y e q u a t i o n mo d e l fo r ma c h i n e t o o l v i b r a t i o n s [ J ] . No n l i n e ar Dy n am i c s , 2 0 0 1 , 2 6 2 1 2 1 - 1 4 2 . [ 5 ] I NS P E R GE R T ,S T E P A N G,T U R I J . S t a t e . d e p e n d e n t d e l a y i n r e g e n e r a t i v e t u r n i n g p r o c e s s e s [ J ] .No n l i n e a r D y n am i c s ,2 0 0 7 ,4 7 1 - 3 7 2 7 5 2 8 3 . [ 6 】 I NS P E R GE R T, B A R T O N D A W , S T E P A N G Cri t i c a l i ty o f h o p f b i f u r c a t i o n i n s tat e - d e p e n d e n t d e l a y mo d e l o f t u rning p r o c e s s e s [ J ] . I n t e rna t i o n a l J o u r n a l o f N o n l i n e ar Me c h a n i c s ,2 0 0 8 ,4 3 2 1 4 0 1 4 9 . [ 7 】 L I Z h o n g q u n,L I U Q i a n g .Mo d e l ing and a n a l y t i c a l [ 8 】 [ 9 】 【 1 O 】 【 1 1 】 s o l u t i o n o f c h a tt e r s t a b i l i ty for T - s l o t mi l l ing [ J ] . C h i n e s e J o u r n a l o f Me c h ani c a l E n g i n e e ri n g , 2 0 1 0 ,2 3 1 8 8 - 9 3 . Y A NG Qi n g d o n g ,L I U Gu o q i n g . D y n a mi c s a n a l y s i s o f s p e c i a l s t r u c t u r e o f mi l l i n g h e a d ma c h i n e t o o l [ J ] . C h i n e s e J o u r n a l o f Me c h ani c a l E n g ine e r i n g , 2 0 0 8 ,2 1 6 l 0 3 . 1 0 7 . 陈花玲,戴德沛. 机床切削颤振的非线性理论研究[ J 】 . 振动工程学报,1 9 9 2 ,5 4 1 3 3 5 . 3 4 2 . CHE N Hu a l i n g, DAI De p e i .T h e n o n l i n e ar t h e o r e t i c r e s e arc h a b o u t c u tt i n g c h a tt e r o f ma c h i n e t o o l [ J ] . J o u r n a l o f V i b r a t i o n E n g i n e e ri n g ,1 9 9 2 ,5 4 3 3 5 3 4 2 . HA N Q i n g k a i , YU T a o , Z HA NG Z h i we i , e t a 1 . No n l i n e ar s tab i l i t y and b i f u r c a t i o n o f mu l t i DOF c h a tt e r s y s t e m i n g r i n d i n g p r o c e s s [ J ] . Ke y E n g i n e e r i n g Ma t e ri a l s ,2 0 0 6 , 3 0 4 3 0 5 1 4 1 . 1 4 5 . 闻邦椿, 李以农, 徐培民, 等. 工程非线性振动[ M】 . 北 京科学出版社,2 0 0 7 . W E N Ba n g c h u, LI Yi n o n g, XU P e i mi n, e t a 1 . E n g i n e e ri n g n o n l i n e ar v i b r a t i o n [ M] .B e ij i n gS c i e n c e Pr e s s , 20 07. 作者简介李勤 良 通信作者 ,男,1 9 8 5年出生,博士研究生。主要研 究方向为非线性振动 ,振动摩擦,颗粒离散元仿真。 E - ma i l l i q i n l i a n g v ip .q q . c o rn 汪博 ,女,1 9 8 4年 出生,博士,讲师。主要研究方向为机械系统动力学 分析。 E - m a i l wa n g b o b l u e 1 1 1 3 1 6 3 .c o rn 赵斌,男,1 9 7 8年出生,博士,讲师。主要研究方 向为机械系统动力学 分析,逆 向工程,产品设计方法学。 E ma i l z h a o b i n 9 7 8 1 6 3 . c o rn 闻邦椿,男,1 9 3 0 年出生,教授,博士研究生导师,中国科学院院士。 主要研究方向为非线性振动、转子动力学、产品设计方法学。 E ma i l b c we n 1 9 3 0 v i p . s i n a . c o rn 学兔兔 w w w .x u e t u t u .c o m