油气输送管线可靠度反问题分析.pdf
第 4 1卷第 2期 2 0 1 2年 2月 化工技术与开发 T e c h n o l o g y De v e l o p me n t o f C h e mi c a l I n d u s t r y V0 1 . 41 No . 2 F e b. 2 01 2 蝴酗 油气输送管线可靠度反问题分析 黄更平 , 陈金梅 。 , 金 誉辉 1 . 广西特种设备监督检验院 , 广西 南宁 5 3 0 2 1 9 ; 2 . 广西工业职业技术学院 , 广西 南宁 5 3 0 0 0 3 摘要 通过失效分析 , 建立压力管道的极限状态方程。采用可靠度反分析法 , 在已知可靠度指标的情况 下, 分析了设计变量服从正态分布和非正态分布 2种情况的随机可靠度反问题计算理论 . 并用改进的一次二 阶矩法对其结果进行验证; 求出压力管道的可靠度指标和可靠度 , 给出算例, 并对结果进行分析。分析结果表 明 , 它具 有 较高 的 实用 性 和通用 性 。 关键词 可靠度指标 反问题 ; 改进的一次二阶矩法 中图分类号 T Q 0 5 5 . 8 文献标识码 A 文章编号 1 6 7 1 . 9 9 0 5 2 0 1 2 0 2 . 0 0 4 6 . 0 3 压 力 管 道 主要 用来 输送 原 油 、 成 品油 、 天然 气 、 水 、 煤 气等各 种物料 的 . 在使 用 中由于物料 本 身 的特 性 、 材 料各 种缺 陷 的存 在 、 材料 老 化等 原 因 。 可能 引起燃 爆和重大灾难性较大 的事故[ 。因 此 , 压 力管 道的可靠 性 问题 是 管道运输 业 的首要 问题 。 常规压 力管 道可靠 性设 计计算 中 。 通 常采用 正 分析法 ,即在 给定设 计参 数统计 特性 条件下 , 对管道进行可靠性分析。但是, 有些问题是在给 定结构 的 目标 可靠度 指标 的基础 上 , 反算 出结构 所需的材料参数和集合参数。可靠度反分析问题 包括 均 值 和标 准 差 的确 定 、已知变 异 系数 求 均 值 、 已知 均值 、 标准 差求 变异系 数等 问题 。 目前 , 国 内已将 可靠 度 反分 析 方法 应 用 于桥 梁 和岩 土 工程 等方 面的研 究[ 2 - 3 ] , 但 在管道参 数 的设计计 算 方 面很 少报道 。本 文主要利用可靠度 反分析法研 究压 力管 道 的设计 参数 问题 。 推 导 了设计 变量 的 迭代 公式 , 并 用正 分析法一 改进 的一 次二 阶矩法 验证 该方法 的有效性 和准确性 。 1 基本 理论 1 . 1 改进的一次二 阶矩 法 】 设结构 的极 限状态方程 的表达式 为 G X 0 1 式 中 。 , , ⋯⋯‰ 为 n个服从 正 态分 布 且相互独立 的随机变量 。 利用 可靠 性理论 的改 进一次 二 阶矩法 即验 算点法 进行求解 。步骤 如下 1 选择初值 根据极 限状态方程 的各 参数 的 均值赋予 初值 ; X t t x 2 其 中 , 为 的均值且有 , , , ⋯ ⋯ , ; 2 计算方向余弦 O G 1 一 I . ‘ c0 商 \/ 酱 lr 3 和可靠性指数 卢的关 系式 为 X l z ⋯ ⋯ i . . c o s 0 x 。 4 4 将 3 中两个 公式带人式 1 求 出 卢; 5 把求 得 的 卢值带 入 3 中两 个公 式 , 得 到 X ; 6 以求得新 重 复第 二步 到第 四步 , 直 到 所求得 卢与上一次计算的卢小于要求的误差 , 则 程序结束。并以最后一次的作为可靠性指数 。 7 求零件的失效概率 F为 1 B 1 一 卢 5 改进 的一次二 阶钜 法只适用 于正 态变量 。工 作者简介 黄更平 1 9 5 7 . , 男 , 工程师 , 主要从事锅 炉、 压力容器 、 压力管道 的监督检查工作 。地址 南 宁市 良庆 区建设路 9 9号 通讯联 系人 陈金梅 . 电话 1 3 9 7 7 1 6 8 3 2 8 收稿 日期 2 0 1 1 - 1 1 - 3 0 . 学兔兔 w w w .x u e t u t u .c o m 第 2期 陈金梅等 油气输 送管线可靠度 反 问题分析 4 7 程实际中很多随机变量并不完全服从正太分布, 因而 当各 随机变量 为非正 态分 布时 , 利用 映射变 换 法将 任意分 布 的随机变量 。 , , ⋯⋯‰ 转 换 成正 态分布变 量 , 即非正 态随机 变量 的当量化 过程 F x H 6 x i F - 。 [ M ] 7 这里 函数 F 是关 于变量 的累计密度分 布 函数 , 中 l 是标准正态分 布函数 。 2 . 2可靠度反分析方法 所谓 的可靠 度反 问题 , 就是 已知结 构 的极 限 状态 , 需要 确 定设 计参 数 , 以达 到在 一 定保 证率 下 . 结构 的抗力不 低于载 荷效应 。因而问题可 以 看作是 在指定 可靠度 指标 的前提下 , 求 解极 限状 态方程 中影 响结构 的某些设计参数 。 设极 限状态方 程 G 处 于变量无关 的标 准 正太空 间里 , 随机变量 U U x , 是 由满足特定分 布 的基本 随机变量 和待 求的设计变量 u 组成 , 而 和 分别 为 和 经过 当量 正 态化 以后 的标 准正态分 布变量 ,在 通常的情况下把 0的均值 或 标准差作 为待求 的设 计变量 。对 于给定 的 目标 可 靠度指标 ,则可靠度 的反 问题 计算步骤可 以表 述为 ] 已知 目标 可靠度指 标 ; 待 求 的设 计变量 的均值或标准差 ;约束条件 m i n l I l l _ \ / ∑ 和G - g , 0 。 V i 1 首 先将 满 足某 种 分 布 的随 机变 量 0按 照 公式 6 、 7 进行 当量正 态化 , 将其变为标准正态 空间下的随机变量。可靠度反问题求解正态分布 的设计参数计算步骤 如下 1 假 设极 限状态方 程 G g , , 其 中 为设计参 数值 , 给定 的可靠度 指标 为 . 并 假设 ’ -- -- / l ‘ , M 2 ‘ , ⋯⋯ , U n 和 ‘ ’ 为极 限状态上第 k次 迭代 的点 。如果式 中 。 , , ⋯⋯ , % 为任意分 布的随机变量 ,利用上文提到 的映射 变换 法将 当量化为标 准正态分布 随机 变量 u , I I , , ⋯⋯ , t i n ; 2 给定 和 的初始值 。 1 m , U 2 ∞ , ⋯⋯ , ∞ 和 ; 3 设 为待求 的设 计参 数 , 将 极 限状态方 程 在初值 处展开为二阶 T a y l o r 公式 g , - g , 0 o l O - O o o O o - a o 1 4 根据给定初始值 , 计算极 限状态方程相应 的梯度, 同时满足m i n l J l I , 求得一个新的向 量 和新 的 , 重复 以上计 算过程 , 直至 和 全 部收敛 。 3 算例 某天然 气管线 随机变量 的概率分 布 、均值 、 标准差及变异 系数 如表 1 、 表 2所 示 , 对其 进行可 靠度反问题分析 L 8 J 。 表 1 壁厚 8 mm 管线随机变量分布及验算点 随机变量 分布类型 均值 标准差 变异系数 验算点 表 2壁厚 8 mm 管线随机变量分布及 验算 点 随 机 变 量分 布 类 型 当 量 均 值 遵 蠡验 算 解 在 内压 作用 下 , 管道 破坏 形式 为屈 服 破 坏 , 根据 最大 剪应 力强 度理 论 第 三 强度理 论 , 材料的破坏由最大剪应力引起 , 其强度条件为 O ---- O 8 -- O “ r [ o r ] ; 9 告 1 0 式 中 , 厂 _ 管道 的周 向应力 和径 向应力 ; 一 管道 的当量应力 ; [ ] 一管道 的许用应力 ; 一 管道 的屈 服极 限。 压力 管道的功能函数 为 G 一 o r e 管道在 内压作用下 的应力为 ; 一 1 1 ; 一 ’ 式 中 P _管道所受 的内压 D 一管道 的内径 ; 一 管道 的壁厚 。 采用改进的一 次二 阶矩法对相 同壁厚不 同概 学兔兔 w w w .x u e t u t u .c o m 4 8 化工技术与开发 第 4 1 卷 率分布的管线进行可靠性分析 ,经过 5 次和 6次迭 代 , 最 终 得 到 可 靠 度 指 标 分 别 为 2 . 0 7 9 8 , 4 . 1 6 0 1 ;对 应 的 可 靠 度 分 别 为 9 8 . 0 8 %. 9 9 . 9 9 %; 验算点 的迭代最终值见表 3 。 本文 主要从 下面两种情况对设计 参数进行反分析 。 情 况 1 已知 天然 气 管线 的可靠 度指 标 2 . 0 7 9 8 , 4 . 1 6 0 1 ; 假定 内压 的变异 系数为设计参数 , 其余参数如 表 1 、 表 2所示 。 利用前 面提出的可靠 度反问题求解方法计算 内压变异系数 。设 初始值 为 0 . 1 5 , 0 . 1 6; 迭代收敛精度为 1 0 。 分别 经过 6 2 、 6 5次迭 代 , 结 果收 敛至要 求精 度 , 迭 代 的终值 分 别为 0 . 1 0 9 4 , 0 . 1 2 5 6 ;其余 随机变量 的迭代如 表 3 所示 。为了检 验计算精 度 . 采用 改进 的一次 二 阶 矩法对 管线结 果进行 正分析 , 得 到管 线 的可靠度 指标分 别为 / 3 2 . 0 7 8 4 , 4 . 1 5 9 3 ; 对应 的可靠 度分别 为 9 8 . 0 8 %, 9 9 . 9 9 %。 表 3情况 1迭代 结果 情 况 2 已 知 天 然 气 管 线 的 可 靠 度 指 标 , 4 . 1 6 0 1 ; 假定管 道 的屈服强 度均值 为设计参数 , 其 余变量如表 1 、 表 2所示。 利用可靠度反问题的求 解 方 法 计 算 屈 服 强 度 均 值 ,初 始 值 分 别 为 4 2 6 . 7 5 8 4 , 4 2 3 .0 0 0 0 ; 分别经过 5 4 、 6 3次迭代 , 结果 收敛至要求 精度 ,各 随机 变量 的迭代 结果 如表 4 所示 。迭代最终值分别 为 4 2 3 . 5 9 4 5 , 4 2 0 . 9 4 5 8 。为 了验证其 精度 。 采 用改进 的一次 二 阶矩法对 管线 结 果 进行 正分 析 ,得 到 管 线 的可 靠 度 指 标 为 , 4 . 1 5 8 7; 对应 的可靠度分别 为 9 8 . 0 8 %, 9 9 . 9 9 %。 表 4情 况 2迭 代 结 果 4 结 论 1 以天然 气 管线 为 例进 行 可靠 度 反分 析 , 并用 一 次二 阶矩 法 进行 验 证 ,结 果表 明可靠 度 反 分析 法 的计算 精 度较 高 , 收敛 速度 较 快 ; 可靠 度反分析法也适用于管道参数的计算 。 2 可 靠 度反 分 析 法具 有 普遍 意 义 , 并 有 待 于进一步研究, 应用到其它设备参数的确定中。 参考 文献 [ 1 ] 刘强 , 王树立 , 赵会军 , 等. 原油顺序输送管道寿命 的 分析研 究 [ J ] . 石 油机械 , 2 0 0 7 ,3 5 4 2 2 2 4 . [ 2 ] 沙丽新 , 石雪飞. 斜拉桥主梁静力可靠性反问题分析 [ J ] . 哈尔滨工业 大学学 报 , 2 0 0 4 , 3 6 2 2 5 8 2 6 0 . 『 3 ] 马科 , 丁德 馨 . 可 靠度 反 问题 分析 方 法在 地下 软 岩 工 程中 的应 用 [ J ] . 工程 建设 与设计 , 2 0 0 7 , 5 9 2 - 9 4 . 赵事 , 蒋 晓斌 , 高 惠临 . 腐蚀管 道 的失效 和剩余 寿命预 测方法 [ J ] . 油气储运 , 2 0 0 6 , 2 5 1 2 2 8 3 1 . YANG Ku n. Z HANG Xi n . F u z z y Ra n d o m Re l i a b i l i t y A n a l y s i s o f B l o c k y R o c k Ma s s i n S l o p e s [ J ] . C h i n a U n i v . o f Mi n i n g& T e c h , 2 0 0 5 , 1 5 2 1 2 9 - 1 3 4 . 罗辉 , 杨 仕教 , 喻清 , 等 . 断 裂 、 基 于 F E MA . R S M G A的 边 坡锚杆设 计可靠性 反 问题 研究 [ J ] . 武汉 理工 大学学 报 , 2 0 1 0 , 3 2 9 9 3 9 6 . 李早 . 赵树 德 . 基 于可 靠性 理 论 的岩 土 工程 反 分析 设 计『 J ] . 西安建筑科技大学学报 自然科学版 , 2 0 0 6 , 3 8 2 1 5 9 - 1 7 7 . 董 玉华 , 余 大涛 ,高 惠临 .Mo n t e C a r l o法 计算 含 缺 陷 油气输送 管线 的失效概率 [ J ] . 机械工 程学报 , 2 0 0 4, 4 0 2 1 3 6 . 1 4 0 . 下转第 2 3页 ] J 1 J] J 1 J] J 学兔兔 w w w .x u e t u t u .c o m 第 2期 夏 明等 费托合成制低 碳烯烃铁基催 化剂研究进展 DAv i s .C a r b o n Na n o t u b e D o c k i n g S t a t i o n s A Ne w C o n c e p t i n C a t a l y s i s [ J ] . C a t al y s i s L e t t e r s , 2 0 0 9 ,1 2 9 1 - 2 3 9 4 5 . [ 3 2 ] I As z l 6 G u c z i , G. S t e fl e r ,O . G e s z t i ,Z s . K o p p 6 n y ,Z . K 6 n y a .E .Mo l n d r 。M.U r b 6 n a n d I .K i r i c s i .C O h y d r o g e n a t i o n o v e r c o b a l t a n d i ron c a t a l y s t s s u p p o r t e d o v e r mu h i wall c a r b o n n a n o t u b e s E ff e c t o f p r e p a r a t i o n [ J ] . J o u r n a l o f C a t a l y s i s . 2 0 0 6 , 2 4 4 1 2 4 3 2 . [ 3 3 ] 刘化 章 ,杨 霞珍 . 一 种合 成气 生 产低 碳烯 烃 的融铁 催 化 剂 及 其 制备 与应 用 [ P ] . C N 2 0 o 9 1 0 2 6 6 6 8 3 . 1 , 2 o o 9 . 1 2 . 3 1 . [ 3 4 ] 孙予罕,李文怀 ,张侃 , 等. 一种用于合成气制备低 碳 烯 烃 的 催 化 剂 及 制 法 和 应 用 [ P 1 .C N 2 0 0 7 1 0 0 61 5 0 7 . 8. 2 0 0 7 0 2 . 0 7 . [ 3 5 ] R . A . D i ff e n b a c h a n d D . J . F a u t h . T h e r o l e o f p H i n t h e p e rfo r ma n c e o f p r e c i p i t a t e d i r o n F i s c h e r - T r o p s c h c a t a l y s t s [ J ] . J o u r n al o f C a t a l y s i s . 1 9 8 6 . 1 00 2 4 6 6 - 4 7 6 . [ 3 6 ] T . R . M o q o p e , H. T . D l a mi n i , G . R . H e a rne a n d N . J . C o v i l l e .Ap p l i c a t i o n o f i n s i t u MO s s b a u e r s p e c t r o s c o p y t o i n v e s t i g a t e t h e e ffe c t o f p r e c i p i t a t i n g a g e n t s o n p r e - c i p i t a t e d i r o n F i s c h e r T r o p s c h c a t a l y s t s[ J ] . C a t al y s i s T o d a y , 2 0 0 2 . 7 1 3 - 4 3 3 5 3 4 1 [ 3 7 ] 万 书 宝 ,贺 德 福 ,孟 锐 , 等 . 浸 渍 顺 序 对 K . F e / S i l i c a l i t e . 2催 化 剂 合 成 气 制 低 碳 烯 烃 性 能 的 影 响 [ J ] . 天然气化工 , 2 0 0 7 , 3 2 2 2 3 2 5 . [ 3 8 ] 张 敬 畅 ,曹维 良,陆 江银 . 用 碳 化铁 超微 粒 子催 化 剂 F - T合 成反应催化性 能的评价 及反应条 件 的选 择 [ J ] . 石油化工 ,1 9 9 6 ,2 5 5 3 1 1 - 3 1 3 . Re s e a r c h Ad v a n c e s i n M a k i n g Li g h t Oi e fin s f o r I r o n - ba s e d Fi s c he r - Tr o p s c h S y n t h e s i s Ca t a l y s t s X/ A 一,L IJ i a n g - b i n g a 1 . S c h o o l o f C h e mi s t r y and C h e m i c al E n g i n e e ri n g , S h i h e z i U n i v e r s i t y / K e y L a b o r a t o ry f o r G r e e n P r o c e s s i n g o f C h e m i c a l E n g i n e e ri n g o f X i n j i a n g B i n g t u a n , S h i h e z i 8 3 2 0 0 3 , C h i n a ; 2 . X i i a n g S h i h e z i V o c a t i o n al a n d T e c h n i c a l C o l l e g e , S h i h e z i 8 3 2 0 0 3 , C h i n a Ab s t r a c t Re c e n t a d v a n c e s i n i r o n - b a s e d F i s c h e r - T r o p s c h s y n t h e s i s c a t a l y s t s f o r l i g h t o l e fi n s f o r ma t i o n we r e r e v i e w e d . A c t iv e p h a s e ,p r o m o t e r a n d c a r r i e r f o r c a t al y s t s a s k e y p r o p e r t i e s w e r e h i g h l i g h t e d . E f f e c t s o f p r e p a r a t i o n c o n d i t i o n s we r e a n aly z e d . F i n a l l y,s o me o u t l o o k s t o s t u d y c o n v e r s i o n o f s y n t h e s i s g a s t o l i g h t o l e fi n s we r eals og i v e n . Ke y wo r d s F i s c h e r T r o p s c h s y n t h e s i s ; s y n g a s ;l i g h t o l e fin s ; i r o n b a s e d c a t aly s t 上接第 4 8页 Re l i a b i l i t y I n v e r s e An a l y s i s o f Oi l a n d Ga s P i p e l i n e s HU ANG Ge n g - p i n g a C HENJ i n me i . J I N Yu h u i 1 . G u a n g x i I n s t i t u t e o f S p e c i a l E q u i p me n t S u p e r v i s i o n a n d I n s p e c t i o n , N a n n i n g 5 3 0 0 2 2 , C h i n a ; 2 . Gu a n g x i Vo c a t i o n a l a n d T e c h n i c a l I n s t i t u t e o f I n d u s t ry , Na n n i n g 5 3 0 0 03, C h i n a Ab s t r a c t B y a n a l y z e d t h e f a i l u r e o f p r e s s u r e p i p e l i n e a ,t h e l i mi t s t a t e e q u a t i o n wa s b u i l t . Co n s i d e rin g t h e c o n d i t i o n o f n o r ma l a n d n o n n o rm al d i s t rib u t i o n for d e s i g n v a ri a b l e s .t h e i n v e r s e p r o b l e m c alc u l a t i o n t h e o r y o f s t o c h a s t i c r e l i a b i l i t y wa s a n a l y z e d u n d e r t h e o b t a i n e d r e l i a b i l i t y i n d e x .T h e r e s u l t s o f t h e r e l i a b i l i t y i n v e r s e a n aly s i s we r e v e ri fie d b y a d v a n c e d fi r s t o r d e r s e c o n d mo me n t . T h e r e l i a b i l i t y i n d e x a n d r e l i a b i l i t y o f p r e s s u r e p i p e l i n e s we r e o b t a i n e d,a n d a n e x a mp l e wa s g i v e n . I t h a d g r e a t p r a c t i c a b i l i t y a n d c o mmo n a l i t y b y a n a l y z e d t h e r e s u l t . Ke y wo r ds r e l i a b i l i t y i n d e x;i n v e r s e p r o b l e m ; a d v a n c e d fir s t o r d e r s e c o n d mo me n t 学兔兔 w w w .x u e t u t u .c o m